Asymmetric self-similar flows of a viscous incompressible fluid along a right-angle corner
- Авторы: Boiko A.V.1,2, Nechepurenko Y.M.1,3,4
-
Учреждения:
- Khristianovich Institute of Theoretical and Applied Mechanics SB RAS
- Tyumen State University
- Marchuk Institute of Numerical Mathematics RAS
- Keldysh Institute of Applied Mathematics RAS
- Выпуск: Том 25, № 2 (2018)
- Страницы: 199-210
- Раздел: Article
- URL: https://journal-vniispk.ru/1531-8699/article/view/217403
- DOI: https://doi.org/10.1134/S0869864318020051
- ID: 217403
Цитировать
Аннотация
Symmetric and asymmetric self-similar flows of a viscous incompressible fluid along a semi-infinite right-angle dihedral corner with a preset streamwise pressure gradient have been considered. Equations describing such flows in the framework of boundary layer approximation have been derived. The asymptotic behavior of solutions of the derived equations far from the corner edge has been theoretically investigated. A new method of computation of these solutions has been developed. Solutions for two types of asymptotic behavior have been obtained.
Об авторах
A. Boiko
Khristianovich Institute of Theoretical and Applied Mechanics SB RAS; Tyumen State University
Автор, ответственный за переписку.
Email: boiko@itam.nsc.ru
Россия, Novosibirsk; Tyumen
Yu. Nechepurenko
Khristianovich Institute of Theoretical and Applied Mechanics SB RAS; Marchuk Institute of Numerical Mathematics RAS; Keldysh Institute of Applied Mathematics RAS
Email: boiko@itam.nsc.ru
Россия, Novosibirsk; Moscow; Moscow
Дополнительные файлы
