Structure and mechanism of action of botulinum and tetanus neurotoxins: A review
- Authors: Skryabina A.A.1, Golenok E.S.1, Sobkh M.M.1, Nikiforov V.V.1,2
-
Affiliations:
- Pirogov Russian National Research Medical University
- Academy of Postgraduate Education
- Issue: Vol 28, No 2 (2023)
- Pages: 118-127
- Section: Reviews
- URL: https://journal-vniispk.ru/1560-9529/article/view/131262
- DOI: https://doi.org/10.17816/EID321328
- ID: 131262
Cite item
Abstract
Botulinum neurotoxins and tetanus neurotoxins are the strongest known toxins that cause neuroparalytic syndromes in botulism and tetanus. This review aimed to systematize scientific data on the structures and mechanism of actions of botulinum and tetanus neurotoxins. Botulinum and tetanus neurotoxins are proteins containing functional domains responsible for receptor binding, transmembrane translocation, and proteolytic cleavage of proteins required for exocytosis of synaptic vesicles and release of neurotransmitters into the synaptic cleft. The main stages of the botulinum neurotoxins and tetanus neurotoxin action include binding to the presynaptic membrane, internalization of bound toxin into the cytosol via endocytosis, translocation of the L-chain into the cytosol via the HN domain, disruption of the interchain disulfide bond with the release of the L-chain to express its catalytic activity (as a metalloprotease) in the cytosol, and selective cleavage of one or more soluble N-ethylmaleimide-sensitive factor attachment receptor complex proteins with subsequent blockade of neurotransmitter release.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Anna A. Skryabina
Pirogov Russian National Research Medical University
Email: anna.skryabina.85@mail.ru
ORCID iD: 0000-0002-2098-222X
SPIN-code: 3692-6818
Russian Federation, Moscow
Ekaterina S. Golenok
Pirogov Russian National Research Medical University
Email: katrinmoroz2012@yandex.ru
ORCID iD: 0009-0008-8645-6071
Russian Federation, Moscow
Maxim M. Sobkh
Pirogov Russian National Research Medical University
Email: maxsobh@gmail.com
ORCID iD: 0009-0005-7346-2796
Russian Federation, Moscow
Vladimir V. Nikiforov
Pirogov Russian National Research Medical University; Academy of Postgraduate Education
Author for correspondence.
Email: v.v.nikiforov@gmail.com
ORCID iD: 0000-0002-2205-9674
SPIN-code: 9044-5289
MD, Dr. Sci. (Med.), Professor
Russian Federation, Moscow; MoscowReferences
- Magazov RSh, Stepanov AV, Chepur SV, Savel’ev AP. Toksiny biologicheskogo proiskhozhdeniya (priroda, struktura, biologicheskie funktsii i diagnostika). Ufa; 2019. (In Russ). 348 p.
- Williams JM, Tsai B. Intracellular trafficking of bacterial toxins. Curr Opin Cell Biol. 2016;41:51–56. doi: 10.1016/j.ceb.2016.03.019
- Dong M, Masuyer G, Stenmark P. Botulinum and Tetanus Neurotoxins. Annu Rev Biochem. 2019;88:811–837. doi: 10.1146/annurev-biochem-013118-111654
- Forbes JD. Clinically Important Toxins in Bacterial Infection: Utility of Laboratory Detection. Clin Microbiol Newsl. 2020;42(20):163–170. doi: 10.1016/j.clinmicnews.2020.09.003
- Nikiforov VV. Botulinum neurotoxin is both poison and medicine: botulinum therapy and iatrogenic botulism. Epidemiology and Infectious Diseases. 2022;27(6):341–359. (In Russ). doi: 10.17816/EID192525
- Johnson EA, Montecucco C. Botulism. Handb Clin Neurol. 2008;91:333–368. doi: 10.1016/S0072-9752(07)01511-4
- Rossetto O, Pirazzini M, Montecucco C. Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat. Rev. Microbiol. 2014;12(8):535–549. 10.1038/nrmicro3295
- Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol Rev. 2017;69(2):200–235. doi: 10.1124/pr.116.012658
- Eruslanov BV, Svetoch EA, Mitsevich IP, Fursova NK, Dyatlov IA. Botulism: characterization of the pathogen and the laboratory diagnostic methods. Bacteriology. 2018;3(4):47–59. (In Russ). doi: 10.20953/2500-1027-2018-4-47-59.
- Nikiforov VV, Tomilin YuN, Chernobrovkinya TYa, Yankovskaya YaD, Burova SV. The difficulties of early diagnosis and treatment of botulism. The Russian Archives of Internal Medicine. 2019;9(4): 253–259. (In Russ). doi: 10.20514/2226-6704-2019-9-4-253-259
- Pirazzini M, Montecucco C, Rossetto O. Toxicology and pharmacology of botulinum and tetanus neurotoxins: an update. Arch Toxicol. 2022;96(6):1521–1539. doi: 10.1007/s00204-022-03271-9
- Pappas G, Kiriaze IJ, Falagas ME. Insights into infectious disease in the era of Hippocrates. Int J Infect Dis. 2008;12:347–350. doi: 10.1016/j.ijid.2007.11.003
- Rao AK, Sobel J, Chatham-Stephens K, Luquez C. Clinical Guidelines for Diagnosis and Treatment of Botulism, 2021. MMWR Recomm Rep. 2021;70(2):1–30. doi: 10.15585/mmwr.rr7002a1
- Megighian A, Pirazzini M, Fabris F, Rossetto O, Montecucco C. Tetanus and Tetanus neurotoxin: from peripheral uptake to central nervous tissue targets. J Neurochem. 2021;158:1244–1253. doi: 10.1111/jnc.15330
- Pirazzini M, Azarnia Tehran D, Leka O, et al. On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments. Biochim Biophys Acta. 2016; 1858(3):467–474. doi: 10.1016/j.bbamem.2015.08.014
- Deppe J, Weisemann J, Mahrhold S, Rummel A. The 25 kDa HC-N domain of clostridial neurotoxins is indispensable for their neurotoxicity. Toxins. 2020;12:743. doi: 10.3390/toxins12120743
- Zhang Y, Varnum SM. The receptor binding domain of botulinum neurotoxin serotype C binds phosphoinositides. Biochimie. 2012;94:920–923. doi: 10.1016/j.biochi.2011.11.004
- Surana S, Tosolini AP, Meyer IFG, et al. The travel diaries of tetanus and botulinum neurotoxins. Toxicon. 2018;147:58–67. doi: 10.1016/j.toxicon.2017.10.008
- Sleigh JN, Tosolini AP, Schiavo G. In vivo imaging of anterograde and retrograde axonal transport in rodent peripheral nerves. Methods Mol Biol. 2020;2143:271–292. doi: 10.1007/978-1-0716-0585-1_20
- Caleo M, Spinelli M, Colosimo F, et al. Transynaptic action of botulinum neurotoxin type A at central cholinergic boutons. J Neurosci. 2018;38:10329–10337. doi: 10.1523/jneurosci.0294-18.2018
- Rummel A. The long journey of botulinum neurotoxins into the synapse. Toxicon. 2015;107:9–24. doi: 10.1016/j.toxicon.2015.09.009
- Reznik AV. Controversial issues of pharmacology of botulinum toxin type A. Plastic Surgery and Aesthetic Medicine. 2021;1:77–84. (In Russ.). doi: 10.17116/plast.hirurgia202101177
- Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1:31–39. doi: 10.1038/35036052
- Prinetti A, Loberto N, Chigorno V, Sonnino S. Glycosphingolipid behaviour in complex membranes. Biochim Biophys Acta. 2009; 1788(1):184–193. doi: 10.1016/j.bbamem.2008.09.001
- Fogolari F, Tosatto SC, Muraro L, Montecucco C. Electric dipole reorientation in the interaction of botulinum neurotoxins with neuronal membranes. FEBS Lett. 2009;583(14):2321–2325. doi: 10.1016/j.febslet.2009.06.046
- Dong M, Masuyer G, Stenmark P. Botulinum and tetanus neurotoxins. Annu Rev Biochem. 2019;88:811–837. doi: 10.1146/annurev-biochem-013118-111654
- Lang T, Jahn R. Core proteins of the secretory machinery. Handb Exp Pharmacol. 2008;(184):107–127. doi: 10.1007/978-3-540-74805-2_5
- Ramakrishnan NA, Drescher MJ, Drescher DG. The SNARE complex in neuronal and sensory cells. Mol Cell Neurosci. 2012 May; 50(1):58–69. doi: 10.1016/j.mcn.2012.03.009
- Mendoza-Torreblanca JG, Vanoye-Carlo A, Phillips-Farfán BV, Carmona-Aparicio L, Gómez-Lira G. Synaptic vesicle protein 2A: Basic facts and role in synaptic function. Eur J Neurosci. 2013;38(11): 3529–3539. doi: 10.1111/ejn.12360
- Chakkalakal JV, Nishimune H, Ruas JL, Spiegelman BM, Sanes JR. Retrograde influence of muscle fibers on their innervation revealed by a novel marker for slow motoneurons. Development. 2010;137(20):3489–3499. doi: 10.1242/dev.053348
- Dong M, Liu H, Tepp WH, et al. Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell. 2008;19(12):5226–5237. doi: 10.1091/mbc.e08-07-0765
- Yeh FL, Dong M, Yao J, et al. SV2 mediates entry of tetanus neurotoxin into central neurons. PLoS Pathog. 2010;6(11):e1001207. doi: 10.1371/journal.ppat.1001207
- Deinhardt K, Salinas S, Verastegui C, et al. Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron. 2006;52:293–305. doi: 10.1016/j.neuron.2006.08.018
- Sleigh JN, Rossor AM, Fellows AD, Tosolini AP, Schiavo G. Axonal transport and neurological disease. Nat Rev Neurol. 2019;15: 691–703. doi: 10.1038/s41582-019-0257-2
- Montal M. Redox regulation of botulinum neurotoxin toxicity: therapeutic implications. Trends Mol Med. 2014;20:602–603. doi: 10.1016/j.molmed.2014.09.005
- Pirazzini M, Azarnia Tehran D, Zanetti G, Rossetto O, Montecucco C. Hsp90 and thioredoxin-thioredoxin Reductase enable the catalytic activity of Clostridial neurotoxins inside nerve terminals. Toxicon. 2018;147:32–37. doi: 10.1016/j.toxicon.2017.10.028
- Azarnia Tehran D, Pirazzini M, Leka O, et al. Hsp90 is involved in the entry of clostridial neurotoxins into the cytosol of nerve terminals. Cell Microbiol. 2017. 2017;19(2). doi: 10.1111/cmi.12647
- Pirazzini M, Azarnia Tehran D, Zanetti G, et al. The thioredoxin reductase — Thioredoxin redox system cleaves the interchain disulphide bond of botulinum neurotoxins on the cytosolic surface of synaptic vesicles. Toxicon. 2015;107:32–36. doi: 10.1016/j.toxicon.2015.06.019
- Pirazzini M, Azarnia Tehran D, Zanetti G, et al. Thioredoxin and its reductase are present on synaptic vesicles, and their inhibition prevents the paralysis induced by botulinum neurotoxins. Cell Rep. 2014;8:1870–1878. doi: 10.1016/j.celrep.2014.08.017
- Zanetti G, Mattarei A, Lista F, et al. Novel small molecule inhibitors that prevent the neuroparalysis of tetanus neurotoxin. Pharmaceuticals. 2021;14(11):1134. doi: 10.3390/ph14111134
- Rossetto O, Pirazzini M, Lista F, Montecucco C. The role of the single interchains disulfide bond in tetanus and botulinum neurotoxins and the development of antitetanus and antibotulism drugs. Cell Microbiol. 2019;21(11):e13037. doi: 10.1111/cmi.13037
- Jahn R, Scheller RH. SNAREs-engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7:631–643. doi: 10.1038/nrm2002
- Pantano S, Montecucco C. The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell Mol Life Sci. 2014;71:793–811. doi: 10.1007/s00018-013-1380-7
- Rossetto O, Montecucco C. Tables of toxicity of botulinum and tetanus neurotoxins. Toxins (Basel). 2019;11(12):686. doi: 10.3390/toxins11120686
- Eleopra R, Montecucco C, Devigili G, et al. Botulinum neurotoxin serotype D is poorly effective in humans: an in vivo electrophysiological study. Clin Neurophysiol. 2013;124:999–1004. doi: 10.1016/j.clinph.2012.11.004
- Doxey AC, Mansfield MJ, Montecucco C. Discovery of novel bacterial toxins by genomics and computational biology. Toxicon. 2018;147:2–12. doi: 10.1016/j.toxicon.2018.02.002
- Montecucco C, Rasotto MB. On Botulinum neurotoxin variability. Mbio. 2015;6(1):e02131–e2214. doi: 10.1128/mBio.02131-14
Supplementary files
