Modern possibilities of drug therapy for patients with botulism

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Botulism is not a commonly encountered infectious disease; however, its severity, the potential use of botulinum toxin as a biological weapon, and the lack of truly effective methods and approaches for treating patients with this pathology prevent it from being regarded as a secondary concern.

Therapeutic measures for botulism, both currently applied in clinical practice and those under development, can be divided into three complementary but unequal groups in terms of volume, complexity of implementation, and effectiveness. The first group of measures aims to neutralize free botulinum neurotoxin in the patient’s body — whether in the blood, stomach, or intestines — by any available means. The objective is to prevent further toxin entry into nerve cells and, consequently, the progression of clinical signs of specific intoxication. This objective is primarily achieved through the intravenous (for rapid effect) administration of specific antitoxins — in Russia, this role is assigned to botulinum antitoxin serum. The use of immunoglobulins remains limited, and monoclonal antibodies are still under investigation.

The second group of measures, predominantly in the development phase with varying degrees of maturity, can be characterized as attempts to create drugs for intraneuronal (antidote) therapy aimed at disrupting the sequential intracellular actions of botulinum neurotoxin — from its internalization into the axonal cytoplasm via the endosomal pathway to the damage of the SNARE protein complex. These include guanidine hydrochloride, 4-aminopyridine (4-AP), 3,4-diaminopyridine (3,4-DAP), tousendanin, and other substances. However, these drugs have not progressed beyond laboratory research and isolated clinical cases with inconclusive results. The third group of therapeutic measures focuses on addressing pathological processes and effects already induced by botulinum neurotoxin at the systemic level. Without underestimating the importance of the continually evolving technology of intravenous infusion therapy for various intoxications, it should be noted that these methods primarily address the consequences rather than the cause. In this regard, some authors consider the possibility of intensive correction of homeostatic disorders through the administration of specialized fluids into the gastrointestinal tract as an addition to or alternative for standard therapy — enteral correction.

The use of enteral correction not only detoxifies the gastrointestinal tract but also restores water-electrolyte balance, acid-base homeostasis, hemorheology, microcirculation, pro- and antioxidant balance, intestinal microbiota, and gastrointestinal motility. The elimination of both the intoxication itself and, more importantly, its underlying cause, promotes the activation of reparative processes, including the restoration of neuromuscular transmission through the synthesis of new SNARE proteins.

作者简介

Vladimir Nikiforov

Pirogov Russian National Research Medical University; Academy of Postgraduate Education of the Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies; Infectious Diseases Clinical Hospital No. 1

编辑信件的主要联系方式.
Email: v.v.nikiforov@gmail.com
ORCID iD: 0000-0002-2205-9674
SPIN 代码: 9044-5289

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Moscow; Moscow; Moscow

Anastasia Kozhevnikova

Pirogov Russian National Research Medical University; Infectious Diseases Clinical Hospital No. 1

Email: ice1234@yandex.ru
ORCID iD: 0009-0009-2606-7071
SPIN 代码: 7443-5512
俄罗斯联邦, Moscow; Moscow

Olga Burgasova

Infectious Diseases Clinical Hospital No. 1; Peoples’ Friendship University of Russia named after Patrice Lumumba; National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya

Email: olgaburgasova@mail.ru
ORCID iD: 0000-0002-5486-0837
SPIN 代码: 5103-0451

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Moscow; Moscow; Moscow

Natalya Antipya

Infectious Diseases Clinical Hospital No. 1

Email: ikb@zdrav.mos.ru
ORCID iD: 0000-0001-8578-2838
SPIN 代码: 6105-6285
俄罗斯联邦, Moscow

参考

  1. O’Horo JC, Harper EP, El Rafei A, et al. Efficacy of antitoxin therapy in treating patients with foodborne botulism: a systematic review and meta-analysis of cases, 1923–2016. Clin Infect Dis. 2017;66 Suppl. 1:S43–S56. doi: 10.1093/cid/cix815
  2. Nikiforov VV. Botulism. Saint Petersburg: Eco-Vector; 2024. 528 p. (In Russ.) doi: 10.17816/b.bot2023
  3. Rao AK, Sobel J, Chatham-Stephens K, Luquez C. Clinical guidelines for diagnosis and treatment of botulism, 2021. MMWR Recomm Rep. 2021;70(2):1–30. doi: 10.15585/mmwr.rr7002a1
  4. Yu PA, Lin NH, Mahon BE, et al. Safety and improved clinical outcomes in patients treated with new equine-derived heptavalent botulinum antitoxin. Clin Infect Dis. 2017;66 Suppl. 1:S57–S64. doi: 10.1093/cid/cix816
  5. Zanetti G, Sikorra S, Rummel A, et al. Botulinum neurotoxin C mutants reveal different effects of syntaxin or SNAP-25 proteolysis on neuromuscular transmission. PLoS Pathog. 2017;13(8):e1006567. doi: 10.1371/journal.ppat.1006567
  6. Cohen LD, Zuchman R, Sorokina O, et al. Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance. PLoS ONE. 2013;8(5):e63191. doi: 10.1371/journal.pone.0063191
  7. Nikiforov VN, Nikiforov VV. Botulism. Leningrad: Meditsina; 1985. 199 p. (In Russ.)
  8. Van Ergmengem E. Ueber einen neuen anaёrobic Bacillus and seine Beziehungen Zum Botulismus. Zeitschrift für Hygiene und Infektionskrankheiten. 1897;26:1–56. (In German)
  9. Antibotulinic serum type A, horse, purified concentrated liquid. Instructions for use [Internet]. Available from: https://www.vidal.ru/drugs/serum_antibotulinic_type_a_horse_purified_concentrated_liquid__31545 Accessed: 15 Jun 2024. (In Russ.)
  10. Package Insert — Botulism Antitoxin Heptavalent (A, B, C, D, E, F, G) — (Equine) [Internet]. Available from: https://www.fda.gov/media/85514/download Accessed: 15 Jun 2024.
  11. Schussler E, Sobel J, Hsu J, et al. Allergic reactions to botulinum antitoxin: a systematic review. Clin Infect Dis. 2017;66 Suppl. 1:S65–S72. doi: 10.1093/cid/cix827.
  12. Lonati D, Schicchi A, Crevani M, et al. Foodborne botulism: clinical diagnosis and medical treatment. Toxins. 2020;12(8):509. doi: 10.3390/toxins12080509
  13. Pirazzini M, Rossetto O. Challenges in searching for therapeutics against botulinum neurotoxins. Expert Opin Drug Discov. 2017;12(5):497–510. doi: 10.1080/17460441.2017.1303476
  14. Nikolaeva IV, Gilmullina FS, Kazancev AYu, Fatkullin BSh. The case of food botulism. Epidemiology and Infectious Diseases. 2022;27(6):360–367. doi: 10.17816/EID120021
  15. Tashpulatuv ShA. Comparative efficacy of homologous botulinum immunoglobulin and heterologous botulinum antiserum in varying severity of botulism [dissertation abstract]. Moscow; 1985. 23 p. (In Russ.)
  16. Arnon SS, Schechter R, Maslanka SE, et al. Human botulism immune globulin for the treatment of infant botulism. N Engl J Med. 2006;354(5):462–471. doi: 10.1056/NEJMoa051926
  17. Arnon SS. Creation and development of the public service orphan drug human botulism immune globulin. Pediatrics. 2007;119(4):785–789. doi: 10.1542/peds.2006-0646
  18. Culler EE, Lögdberg EL. Albumin IVIG and derivatives. In: Blood Banking and Transfusion Medicine. 2nd ed. 2007. doi: 10.1016/B978-0-443-06981-9.X5001-7
  19. Rasetti-Escargueil C, Popoff MR. Antibodies and vaccines against botulinum toxins: available measures and novel approaches. Toxins (Basel). 2019;11(9):528. doi: 10.3390/toxins11090528
  20. Van Horn NL, Street M. Infantile Botulism. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
  21. Khouri JM, Motter RN, Arnon SS. Safety and immunogenicity of investigational recombinant botulinum vaccine, rBV A/B, in volunteers with pre-existing botulinum toxoid immunity. Vaccine. 2018;36(15):2041–2048. doi: 10.1016/j.vaccine.2018.02.042
  22. Matsumura T, Amatsu S, Misaki R, et al. Fully human monoclonal antibodies effectively neutralizing botulinum neurotoxin serotype B. Toxins (Basel). 2020;12(5):302. doi: 10.3390/toxins12050302
  23. Morris IG, Hatheway CL. Botulism in the U.S. 1979. Infect Dis. 1980;142(2):302–305.
  24. Lewis GE Jr. Approaches to the prophylaxis, immunotherapy, and chemotherapy of botulism. In: Lewis GE Jr, editor. Biomedical Aspects of Botulism. New York: Academic Press; 1981. P. 261–270.
  25. Nayak SU, Griffiss JM, McKenzie R, et al. Safety and Pharmacokinetics of XOMA 3AB, a Novel Mixture of Three Monoclonal Antibodies against Botulinum Toxin A. Antimicrob Agents Chemother. 2014;58(9):5047–5053. doi: 10.1128/AAC.02830-14
  26. Fan Y, Dong J, Lou J, et al.. Monoclonal antibodies that inhibit the proteolytic activity of botulinum neurotoxin serotype/B. Toxins (Basel). 2015;7(9):3405–3423. doi: 10.3390/toxins7093405
  27. Fan Y, Garcia-Rodriguez C, Lou J, et al. A three monoclonal antibody combination potently neutralizes multiple botulinum neurotoxin serotype F subtypes. PLoS ONE. 2017;12(3):e0174187. doi: 10.1371/journal.pone.0174187
  28. Garcia-Rodriguez C, Razai A, Geren IN, et al. A Three Monoclonal Antibody Combination Potently Neutralizes Multiple Botulinum Neurotoxin Serotype E Subtypes. Toxins (Basel). 2018;10(3):105. doi: 10.3390/toxins10030105
  29. Snow DM, Riling K, Kimbler A, et al. Safety and Pharmacokinetics of a Four Monoclonal Antibody Combination Against Botulinum C and D Neurotoxins. Antimicrob Agents Chemother. 2019;63(12):e01270-19. doi: 10.1128/AAC.01270-19
  30. Fan Y, Barash JR, Lou J, et al. Immunological characterization and neutralizing ability of monoclonal antibodies directed against botulinum neurotoxin type H. J Infect Dis. 2016;213(10):1606–1614. doi: 10.1093/infdis/jiv770
  31. Maslanka SE, Luquez C, Dykes JK, et al. A Novel Botulinum Neurotoxin, Previously Reported as Serotype H, Has a Hybrid-Like Structure With Regions of Similarity to the Structures of Serotypes A and F and Is Neutralized With Serotype A Antitoxin. J Infect Dis. 2015;213(3):379–385. doi: 10.1093/infdis/jiv327
  32. Snow DM, Cobb RR, Martinez J, et al. A Monoclonal Antibody Combination against both Serotypes A and B Botulinum Toxin Prevents Inhalational Botulism in a Guinea Pig Model. Toxins (Basel). 2021;13(1):31. doi: 10.3390/toxins13010031
  33. The Ministry of Health has authorized medical trials of a new drug for the treatment of botulism [Internet]. Available from: https://www.interfax.ru/russia/968108 Accessed: 15 Jun 2024. (In Russ.)
  34. Ambache N. The peripheral action of Cl. botulinum toxin. J Physiol. 1949;108(2):127–141.
  35. Berg JM, John L, Tymoczko, et al. Biochemistry. 6th ed. 2006. P. 882–883.
  36. Catterall WA. Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium. 1998;24(5-6):307–323. doi: 10.1016/s0143-4160(98)90055-0
  37. Shi YL, Wang ZF. Cure of experimental botulism and antibotulismic effect of toosendanin. Acta Pharmacol Sin. 2004;25(6):839–848.
  38. Montecucco C, Papini E, Schiavo G. Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett. 1994;346(1):92–98. doi: 10.1016/0014-5793(94)00449-8
  39. Shi YL, Hu Q. Progress on study of mechanism of botulinum neurotoxin action. Progress in Biochemistry and Biophysics. 1998;25(2):126–130.
  40. Schiavo G., Matteoli M., Montecucco C. Neurotoxins affecting neuroexocytosis. Physiol Rev. 2000;80(2):717–766. doi: 10.1152/physrev.2000.80.2.717
  41. Fujii N, Kimura K, Yokosawa N, et al. A zinc-protease specific domain in botulinum and tetanus neurotoxins. Toxicon. 1992;30(11):1486–1488. doi: 10.1016/0041-0101(92)90525-a
  42. Schiavo G, Benfenati F, Poulain B, et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 1992;359(6398):832–835. doi: 10.1038/359832a0
  43. Yamasaki S, Hu Y, Binz T, et al. Synaptobrevin/vesicle-associated membrane protein (VAMP) of Aplysia californica: structure and proteolysis by tetanus toxin and botulinal neurotoxins type D and F. Proc Natl Acad Sci U S A. 1994;91(11):4688–4692. doi: 10.1073/pnas.91.11.4688
  44. Schiavo G, Shone CC, Rossetto O, et al. Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J Biol Chem. 1993;268(16):11516–11519.
  45. Schiavo G, Malizio C, Trimble WS, et al. Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond. J Biol Chem. 1994;269(32):20213–20216.
  46. Blasi J, Chapman ER, Link E, et al. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature. 1993;365(6442):160–163. doi: 10.1038/365160a0
  47. Binz T, Blasi J, Yamasaki S, et al. Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem. 1994;269(3):1617–1620.
  48. Blasi J, Chapman ER, Yamasaki S, et al. Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J. 1993;12(12):4821–4828. doi: 10.1002/j.1460-2075.1993.tb06171.x
  49. Cherington M, Ryan DW. Treatment of botulism with guanidlne — Early neurophysiologic studies. N Engl J Мed. 1970;282(4):195–197. doi: 10.1056/NEJM197001222820405
  50. Puggiari M, Cherington M. Botulism and guanidine. Ten years later. JAMA. 1978;240(21):2276–2267. doi: 10.1001/jama.1978.03290210058027
  51. Morrison VV. The influence of guanidine on the development of experimental botulinum intoxication. In: Mechanisms of the infectious process and reactivity of the body. Part 1. Saratov; 1980. P. 69–71. (In Russ.)
  52. Morrison VV. Guanidine therapy for botulism. In: Pathophysiology of the infectious process and allergies. Saratov; 1981. P. 42–49. (In Russ.)
  53. Sebald M, Jouglard J. Aspects acatuels du botulisme. Rev Prat. 1977;27(3):173–180.
  54. Kaplan JE, Davis LE, Narayan V, et al. Botulism, type A, and treatment with guanidine. Ann Neurol. 1979;6(1):69–71. doi: 10.1002/ana.410060117
  55. Roblot P, Roblot F, Fauchère JL, et al. Retrospective study of 108 cases of botulism in Poitiers, France. J Med Microbiol. 1994;40(6):379–384. doi: 10.1099/00222615-40-6-379
  56. Lundh H, Leander S, Thesleff S. Antagonism of the paralysis produced by botulinum toxin in the rat. The effects of tetraethylammonium, guanidine and 4-aminopyridine. J Neurol Sci. 1977;32(1):29–43. doi: 10.1016/0022-510x(77)90037-5
  57. Bradford AB, Machamer JB, Russo TM, McNutt PM. 3,4-diaminopyridine reverses paralysis in botulinum neurotoxin-intoxicated diaphragms through two functionally distinct mechanisms. Toxicol Appl Pharmacol. 2018;341:77–86. doi: 10.1016/j.taap.2018.01.012
  58. Siegel LS, Johnson-Winegar AD, Sellin LC. Effect of 3,4-diaminopyridine on the survival of mice injected with botulinum neu-rotoxin type A, B, E, or F. Toxicol Appl Pharmacol. 1986;84(2):255–263. doi: 10.1016/0041-008x(86)90133-x
  59. Mayorov AV, Willis B, Di Mola A, et al. Symptomatic relief of botulinum neurotoxin/a intoxication with aminopyridines: a new twist on an old molecule. ACS Chem Biol. 2010;5(12):1183–1191. doi: 10.1021/cb1002366
  60. Adler M, Capacio B, Deshpande SS. Antagonism of botulinum toxin A-mediated muscle paralysis by 3, 4-diaminopyridine delivered via osmotic minipumps. Toxicon. 2000;38(10):1381–1388. doi: 10.1016/s0041-0101(99)00231-7
  61. Thomsen RH, Wilson DF. Effects of 4-aminopyridine and 3,4-diaminopyridine on transmitter release at the neuromuscular junction. J Pharmacol Exp Ther. 1983;227(1):260–265.
  62. Meriney SD, Lacomis D. Reported direct aminopyridine effects on voltage-gated calcium channels is a high-dose pharmacological off-target effect of no clinical relevance. J Biol Chem. 2018;293(41):16100. doi: 10.1074/jbc.L118.005425
  63. Delbono O, Kotsias BA. Relation between action potential duration and mechanical activity on rat diaphragm fibers. Effects of 3,4-diaminopyridine and tetraethylammonium. Pflugers Arch. 1987;410(4-5):394–400. doi: 10.1007/BF00586516
  64. Lin-Shiau SY, Day SY, Fu WM. Use of ion channel blockers in studying the regulation of skeletal muscle contractions // Naunyn Schmiedebergs Arch Pharmacol. 1991;344(6):691–697. doi: 10.1007/BF00174753
  65. Sudhof TC, Rizo J. Synaptic vesicle exocytosis. Cold Spring Harb Perspect Biol. 2011;3(12):a005637. doi: 10.1101/cshperspect.a005637
  66. Lundh H, Thesleff S. The mode of axtion of 4-aminopyridins and guanidine on transmitter release from motor nerve terminals. Eur J Pharmacol. 1977;42(4):411–412. doi: 10.1016/0014-2999(77)90176-5
  67. Sellin LC. The action of botulinum toxin at the neuromuscular junction. Med Biol. 1981;59(1):11–20.
  68. Qiao J, Hayes KC, Hsieh JT, C. et al. Effects of 4-aminopyridine on motor evoked potentials in patients with spinal cord injury. J Neurotrauma. 1997;14(3):135–149. doi: 10.1089/neu.1997.14.135
  69. Simpson LL. A preclinical evaluation of aminopyridines as putative therapeutic agents in the treatment of botulism. Infect Immun. 1986;52(3):858–862. doi: 10.1128/iai.52.3.858-862.1986
  70. Adler M, Scovill J, Parker G, et al. Antagonism of botulinum toxin-induced muscle weakness by 3,4-diaminopyridine in rat phrenic nerve-hemidiaphragm preparations. Toxicon. 1995;33(4):527–537. doi: 10.1016/0041-0101(94)00183-9
  71. Adler M, Macdonald DA, Sellin LC, Parker GW. Effect of 3,4-diaminopyridine on rat extensor digitorum longus muscle paralyzed by local injection of botulinum neurotoxin. Toxicon. 1996;34(2):237–249. doi: 10.1016/0041-0101(95)00127-1
  72. Friggeri A, Marçon F, Marciniak S, et al. 3,4-Diaminopyridine may improve neuromuscular block during botulism. Crit Care. 2013;17(5):449. doi: 10.1186/cc12880
  73. Davis LE, Johnson JK, Bicknell JM, et al. Human type A botulism and treatment with 3,4-diaminopyridine. Electromyogr Clin Neurophysiol. 1992;32(7-8):379–383.
  74. Dock M, Ben Ali A, Karras A, et al. Treatment of severe botulism with 3,4-diaminopyridine. Presse Med. 2002;31(13):601–602.
  75. Oriot C, D’Aranda E, Castanier M, et al. One collective case of type A foodborne botulism in Corsica. Clin Toxicol (Phila). 2011;49(8):752–754. doi: 10.3109/15563650.2011.606222
  76. Ball AP, Hopkinson RB, Farrell ID, et al. Human botulism caused by Clostridium botulinum type E: the Birmingham outbreak. Q J Med. 1979;48(191):473–491.
  77. Morrison VV, Kryzhanovskii GN. Effect of 4-aminopyridine on the development of experimental botulism. Biull Eksp Biol Med. 1985;100(10):445–447.
  78. Morbiato L, Carli L, Johnson EA, et al. Neuromuscular paralysis and recovery in mice injected with botulinum neurotoxins A and C. Eur J Neurosci. 2007;25(9):2697–2704. doi: 10.1111/j.1460-9568.2007.05529.x
  79. Siegel LS, Price JI. Ineffectiveness of 3,4-diaminopyridine as a therapy for type C botulism. Toxicon. 1987;25(9):1015–1018. doi: 10.1016/0041-0101(87)90166-8
  80. Harris TL, Wenthur CJ, Diego-Taboada A, et al. Lycopodium clavatum exine microcapsules enable safe oral delivery of 3,4-diaminopyridine for treatment of botulinum neurotoxin A intoxication. Chem Commun (Camb). 2016;52(22):4187–4190. doi: 10.1039/c6cc00615a
  81. Vazquez-Cintron E, Machamer J, Ondeck C, et al. Symptomatic treatment of botulism with a clinically approved small molecule. JCI Insight. 2020;5(2):e132891. doi: 10.1172/jci.insight.132891
  82. Souayah N, Mehyar LS, Khan HM, et al. Trends in outcome and hospitalization charges of adult patients admitted with botulism in the United States. Neuroepidemiology. 2012;38(4):233–236. doi: 10.1159/000336354
  83. Sanders DB. 3,4-Diaminopyridine (DAP) in the treatment of Lambert-Eaton myasthenic syndrome (LEMS). Ann N Y Acad Sci. 1998;841:811–816. doi: 10.1111/j.1749-6632.1998.tb11022.x
  84. Firdapse Prices, Coupons, Copay Cards & Patient Assistance [Internet]. Available from: https://www.drugs.com/price-guide/firdapse Accessed: 15 Jun 2024.
  85. Morris IG. Current trends in therapy of botulism in the United States. In: Biomedical aspects of botulism. New York: Acad. Press. Inc.; 1981. P. 317–326.
  86. Neal KR, Dunbar EM. Improvement in bulbar weakness with guanoxan in type B botulism. Lancet. 1990;335(8700):1286–1287. doi: 10.1016/0140-6736(90)91360-m
  87. Chang CC, Hsie TH, Chen SF, Liang HT. The structure of Chuanliansu. Acta Chem Sin. 1975;33:35–47.
  88. Shu GX, Liang XT. A correction of the structure of Chuanliansu. Acta Chim Sin. 1980;38:196–198.
  89. Shi YL. Toosendanin, a new presynaptic blocker: pharmacology, antibotulismic effect and as an antifeedant against insects. In: Chen Y.C., Yuan S.L., editors. Study and Utility of Toxins. Beijing: Science Press; 1998. P. 192–206. (In Chinese)
  90. Shi YL, Wang WP, Liao CY, Chiu SH. Effect of toosendanin on the sensory inputs of chemoreceptor in the amyworm larval (Mythimna Seperata). Acta Entomol Sin. 1986;29:233–239.
  91. Cip P, Jou J, Miao N. Efficacy of the treatment of botulism toxin poisoning of toosendanin. Chem Abstr. 1983;98(3):12662.
  92. Shin J, Hsu K. Anti-botulismie effect of toosendanin and its facilitatory action on miniature and plate potentials. Jpn J Physiol. 1983;33(4):677–680. doi: 10.2170/jjphysiol.33.677
  93. Zhong G., Cheu J., Ku J. Isolation of toosendanin from the aqueous extract of lark of media. Chem Abstr. 1981;95(20):175610.
  94. Zhuo J, Gu J, Rou C, Zhao P. Study on toosendanin in dynamics in the lark of media toosendanin s. et z. Chem Abstr. 1981;95(23):200564.
  95. Shi YL, Wang WP, Xu K. Electrophysiological analysis on the presynaptic blocking effects of toosendanin on neuromuscular transmission. Acta Physiol Sin. 1981;33;259–265.
  96. Xu TH, Ding J, Shi YL. Toosendanin increases free-Ca(2+) concentration in NG108-15 cells via L-type Ca(2+) channels. Acta Pharmacol Sin. 2004;25(5):597–601.
  97. Hu M, Xu M, Chen Y, et al. Therapeutic potential of toosendanin: Novel applications of an old ascaris repellent as a drug candidate. Biomed Pharmacother. 2023;167:115541. doi: 10.1016/j.biopha.2023.115541
  98. Zhou JY, Wang ZF, Ren XM, et al. Antagonism of botulinum toxin type A-induced cleavage of SNAP-25 in rat cerebral synaptosomes by toosendanin. FEBS Lett. 2003;555(2):375–379. doi: 10.1016/s0014-5793(03)01291-2
  99. Li MF, Shi YL. Toosendanin inhibits pore formation of botulinum toxin type A at PC12 cell membrane. Acta Pharmacol Sin. 2006;27(1):66–70. doi: 10.1111/j.1745-7254.2006.00236.x
  100. Sun S, Suresh S, Liu H, et al. Chapman, Receptor binding enables botulinum neurotoxin B to sense low pH for translocation channel assembly. Cell Host Microbe. 2011;10(3):237–247. doi: 10.1016/j.chom.2011.06.012
  101. Zou J, Miao WY, Ding FH, et al. The effect of toosendanin on monkey botulism. J Tradit Chin Med. 1985;5(1):29–30.
  102. Li PZ, Zou J, Miao WY, et al. Treatment of animals intoxicated by botulinum toxin with toosendanin. Chin Tradit Herb Drugs. 1982;13(6):28–33.
  103. Shin J, Hsu K. Anti-botulismie effect of toosendanin and its facilitatory action on mi niature and plate potentials. Jpn J Physiol. 1983;33(4):677–680. doi: 10.2170/jjphysiol.33.677
  104. Chiu SF. Recent advances in research on botanical insecticides in China. In: Arnason JT, Philogene BJR., Morand P, editors. Insecticides of Plant Origin. Washington: American Chemical Society, 1989. P. 69–77.
  105. Carpinella MC, Defago MT, Valladares G, Palacios SM. Anti-feedant and insecticide properties of a limonoid from Melia azedarach (Meliaceae) with potential use for pest management. J Agric Food Chem. 2003;51(2):369–374. doi: 10.1021/jf025811w
  106. Zhang X, Wang XL, Feng JT. An innocuous insecticide, toosendanin. Acta Northwe Uni Agricult Sin. 1993;21:1–5.
  107. Fritz LC, Atwood HL, Jahkomi SS. Ultrastructure of Lobster neuromuscular junction treated with black widow spider venom: correlation between ultrastructure and physiology. J Neurocytol. 1980;9(5):699–721. doi: 10.1007/BF01205034
  108. Pumplin LW, Reese TS. Action of brown widow spidek venom and botulinum toxin on the frog neuromuscular function examined with freeze-fracture technique. J Physiol. 1977;273(2):443–457. doi: 10.1113/jphysiol.1977.sp012103
  109. Pumlin DW, Me Clure WO. The realease of acetylcholine elieted by textracts of black widow spider glands: Studies using rat superior cervical ganglia andinhibitors of electrically stimulated release. J Pharmacol Exp Ther. 1977;20(1):312–319.
  110. Clark AW, Huklbut WP, Mauro A. Changes in the fine structure of the frog caused by black widow spider venom. J Cell Biol. 1972;52(1):1–14. doi: 10.1083/jcb.52.1.1
  111. Simpson LL. Ammonium chloride and methylamine hydrochloride antagonize clostridial neurotoxins. J Pharmacol Exp Ther. 1983;225(3):546–552.
  112. Anderson DC, King SC, Parsons SM. Proton gradient linkage to active uptake of [3H]acetylcholine by Torpedo electric organ synaptic vesicles. Biochemistry. 1982;21(13):3037–3043. doi: 10.1021/bi00256a001
  113. Lukacs GL, Rotstein FD, Grinstein S. Phagosomal acidification is mediated by a vacuolar-type H+-ATPase in murine macrophages. J Biol Chem. 1990;265(34):21099–21107.
  114. Sheridan RE. Protonophore antagonism of botulinum toxin in mouse muscle. Toxicon. 1996;34(8):849–855. doi: 10.1016/0041-0101(96)00040-2
  115. Simpson LL. The interaction between aminoquinolines and presynaptically acting neurotoxins. J Pharmacol Exp Ther. 1982;222(1):43–48.
  116. Deshpande SS, Sheridan RE, Adler M. Efficacy of certain quinolines as pharmacological antagonists in botulinum neurotoxin poisoning. Toxicon. 1997;35(3):433–445. doi: 10.1016/s0041-0101(96)00147-x
  117. Deshpande SS, Sheridan RE, Adler M. A study of zincdependent metalloendopeptidase inhibitors as pharmacological antagonists in botulinum neurotoxin poisoning. Toxicon. 1995;33(4):551–557. doi: 10.1016/0041-0101(94)00188-e
  118. Simpson LL, Coffield JA, Bakry N. Chelation of zinc antagonizes the neuromuscular blocking properties of the seven serotypes of botulinum neurotoxin as well as tetanus toxin. J Pharmacol Exp Ther. 1993;267(2):720–727.
  119. Sheridan RE, Deshpande SS. Interactions between heavy metal chelators and botulinum neurotoxin at the neuromuscular junction. Toxicon. 1995;33(4):539–549. doi: 10.1016/0041-0101(94)00185-b
  120. Burn JH. Evidence that acetylcholine releases noradrenaline in the sympatic fibre. J Pharm Pharmacol. 1977;29(6):325–329. doi: 10.1111/j.2042-7158.1977.tb11329.x
  121. Potskhveriya MM, Matkevich VA, Goldfarb YuS, et al. The program of enteral correction of homeostasis disorders and its effect on intestinal permeability in acute poisoning. Transplantologiya. The Russian Journal of Transplantation. 2022;14(1):45–57. doi: 10.23873/2074-0506-2022-14-1-45-57
  122. Matkevich VA, Potskhveriya MM, Simonova AYu, et al. Management of disorders of homeostasis with saline enteral solution in acute poisoning with psychopharmacological drugs. Russian Sklifosovsky Journal “Emergency Medical Care”. 2020;9(4):551–563. doi: 10.23934/2223-9022-2020-9-4-551-563
  123. Zarivchatsky MF. The enteral way of maintaining and correcting homeostasis in surgical patients [dissertation abstract]. Perm; 1990. 41 p. (In Russ.)
  124. Bryusov PG, Butko GV. Enteral correction of hemodynamics in massive blood loss. Vestnik khirurgii. 1998;(1):39–43. (In Russ.)
  125. Booth IP, Ferreira RC, Desjeux JF. Recommendations for composition of oral rehydration solution from the children of Europe. Report of an ESPGAN working group. J Pediatr Gastroenterol. 2010;4(5):108–114.
  126. Galperin YuM, Lazarev PI. Digestion and homeostasis. Moscow: Nauka; 1986. 304 p. (In Russ.)
  127. The copyright certificate for the invention 1102571 USSR MPK4 A 61 At 10/00. Galperin Yu.M., Baklykova N.M. A method for determining the suitability of nutrient mixtures for enteral nutrition. Application N 2907093/28-13 dated 04.02.1980. Published: 15.07.1984. (In Russ.)
  128. Galperin YuM, Kovalskaya KS, Katkovsky GB. Enteral infusions of monomeric electrolyte solutions with massive blood loss. Khirurgiya. 1988;(4):75-80. (In Russ.)
  129. Certificate of state registration N RU.77.99.32.004. R.000813.03.22 dated 03.17.2022. (In Russ.)
  130. Matkevich VA. Intestinal lavage. In: Luzhnikov EA, editor. Medical Toxicology [national guidelines]. Moscow: GEOTAR-Media; 2012. P. 162–186. (In Russ.)
  131. Yershova IB, Mochalova AA, Chernousova SN, et al. Relevance of oral rehydration as a natural method of compensation of fluid and electrolyte balance in the body. Zdorov’e rebenka. 2012;8(43):105–107. (In Russ.) EDN: QZYPUT
  132. Abaturov AYe, Gerasimenko ON, Vysochina IL. Modern principles of oral rehydration therapy in treatment of acute enteric infections in children. Zdorov’e rebenka. 2012; 2(37):84–90. (In Russ.) EDN: NKILWV
  133. Kiselev VV, Ryk AA, Aliyev IS. Enteral correction as a component of the initial therapy of enteral nutrition in patients in the ICU. In: Forum of anesthesiologists and intensive care specialists of Russia (FARR-2019): XVIII Congress of the Federation of Anesthesiologists and Intensive Care Specialists, Moscow, October 18-20, 2019. Moscow: Sankt-Peterburgskaya obshchestvennaya organizatsiya «Chelovek i ego zdorov’e»; 2019. P. 130. EDN: TCDTMC

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-vector, 2024


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».