Mechanisms of Cholera Agent Persistence under Varying Osmolarity Conditions
- 作者: Zadnova S.P.1, Plekhanov N.A1, Smirnova N.I1
-
隶属关系:
- Russian Research Anti-Plague Institute «Microbe» of the Federal Service for Consumer Rights Protection and Human Welfare
- 期: 卷 21, 编号 4 (2016)
- 页面: 225-233
- 栏目: Articles
- URL: https://journal-vniispk.ru/1560-9529/article/view/40923
- DOI: https://doi.org/10.17816/EID40923
- ID: 40923
如何引用文章
全文:
详细
作者简介
Svetlana Zadnova
Russian Research Anti-Plague Institute «Microbe» of the Federal Service for Consumer Rights Protection and Human Welfare
Email: rusrapi@microbe.ru
MD, PhD, DSci., leading researcher of the Russian Research Anti-Plague Institute «Microbe» of the Federal Service for Consumer Rights Protection and Human Welfare 46, Universitetskaya str., Saratov, 410005, Russian Federation
N. Plekhanov
Russian Research Anti-Plague Institute «Microbe» of the Federal Service for Consumer Rights Protection and Human Welfareмл. науч. сотр. лаб. патогенных вибрионов ФКУЗ РосНИПЧИ «Микроб» 46, Universitetskaya str., Saratov, 410005, Russian Federation
N. Smirnova
Russian Research Anti-Plague Institute «Microbe» of the Federal Service for Consumer Rights Protection and Human Welfare
Email: rusrapi@microbe.ru
доктор биол. наук, проф., зав. лаб. патогенных вибрионов ФКУЗ РосНИПЧИ «Микроб» 46, Universitetskaya str., Saratov, 410005, Russian Federation
参考
- Москвитина Э.А., Мазрухо А.Б., Адаменко О.Л., Арешина О.А., Назаретян А.А., Кругликов В.Д. и др. Характеристика эпидемиологической обстановки по холере в мире (2003-2012 гг.) и прогноз на 2013 г. Проблемы особо опасных инфекций. 2013; (1): 11-7.
- Титова С.В., Москвитина Э.А., Кругликов В.Д., Самородова А.В., Тюленева Е.Г., Монахова Е.В. и др. Оценка эпидемиологической обстановки в мире и России в 2006-2015 гг. Прогноз на 2016 г. Проблемы особо опасных инфекций. 2016; (1): 20-7.
- Huq A., West P.A., Small E.B., Huq M.I., Colwell R.R. Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar O1 associated with live copepods in laboratory microcosms. Appl. Environ. Microbiol. 1984; 48: 420-4.
- Colwell R.R. Global climate and infectious disease: the cholera paradigm. Science. 1996; 274: 2025-31.
- Brown I.I., Sirenko L.A. The role of the sodium cycle of energy coupling in the emergence and persistence of natural foci of modern cholera. Biochemistry. 1997; 62: 225-30.
- Lutz C., Erken M., Noorian P., Sun S., McDougald D. Environmental reservoirs and mechanism of persistence of Vibrio cholerae. Front. Microbiol. 2013; 4(00375): 1-15. doi: 10.3389/fmicb.2013.00375
- Islam M.S., Islam M.S., Mahmud Z.H., Caimcross S., Clemens J.D., Collins A.E. Role phytoplankton in maintaining endemicity and seasonality of cholera in Bangladesh. Trans. Roy. Soc. Trop. Med. Hyg. 2015; 109(9): 572-8. doi: 10.1093/trstmh/trv057
- Singleton F.L., Attwell R.W., Jangi M.S., Colwell R.R. Influence of salinity and organic nutrient concentration on survival and growth of Vibrio cholerae in aquatic microcosms. Appl. Environ. Microbiol. 1982; 43: 1080-5.
- Shikuma N.J., Yildiz F.H. Identification and characterization of OscR, a transcriptional regulator involved in osmolarity adaptation in Vibrio cholerae. J. Bacteriol. 2009; 191: 4082-96. doi: 10.1128/JB.01540-08
- Colwell R.R., Huq A. Environmental reservoir of Vibrio cholerae. The causative agent of cholera. Ann. N.Y. Acad. Sci. 1994; 740: 44-54. doi: 10.1111/j.1749-6632.1994.tb19852.x
- McCarthy S.A. Effects of temperature and salinity on survival of toxigenic Vibrio cholerae O1 in seawater. Microbiol. Ecol. 1996; 31(2): 167-75. doi: 10.1007/BF 00167862
- Pascual M., Bouma M.J., Dobson A.P. Cholera and climate: revisiting the quantitative evidence. Microb. Infect. 2002; 4: 237-45. doi: 10.1016/S1286-4579(01)01533-7
- Collins A.E. Vulnerability to coastal ecology. Soc. Sci. Med. 2003; 57: 1397-407. doi: 10.1016/S0277-9636(02)00519-1
- Colwell R.R. Infectious disease and environment: cholera as a paradigm for waterborne disease. Intern. Microbiol. 2004; 7: 285-9.
- Huq A., Sack R.B., Nizam A., Longini I.M., Nair G.B., Ali A. et al. Critical factors influencing the occurrence of Vibrio cholerae in the environment of Bangladesh. Appl. Environ. Microbiol. 2005; 71: 4645-54. doi: 10.1128/AEM.71.8.4645-4654.2005
- Lobitz B., Beck L., Hug A., Wood B., Fuchs G., Faruque A.S.G. et al. Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc. Natl. Acad. Sci. USA. 2000; 97: 1438-43.
- Москвитина Э.А., Мазрухо А.Б., Адаменко О.Л., Арешина О.А., Кругликов В.Д., Безсмертный В.Е. и др. Аналитические данные о выделении холерных вибрионов О1 и О139 серогрупп из поверхностных водоемов и других объектов окружающей среды на административных территориях России, различных по типам эпидемических проявлений холеры. В кн.: «Холера и патогенные для человека вибрионы»: Материалы Совещания специалистов Роспотребнадзора 5-6 июня 2013 г. Ростов-н/Д: Дониздат; 2013; 26: 26-34.
- Gupta S., Chowdhury R. Bile affects production of virulence factors and motility of Vibrio cholerae. Infect. and Immun. 1997; 65: 1131-4.
- Mahalanabis D., Watten R., Wallace C. Clinical aspects and management of pediatric cholera. In: Barua D. and Burrows W. (Eds.). Cholera. Philadelphia: W.B. Saunders Company; 1974: 221-33.
- Häse C.C., Mekalanos J.J. Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. USA. 1999; 96: 3183-7.
- Häse C.C., Barquera B. Role of sodium bioenergetics in Vibrio cholerae. Biochim. Biophys. Acta. 2001; 1505: 169-78. doi: 10.1016/S0005-2728(00)00286-3
- Miller C.J., Drasar B.S., Feachem R.G. Response of toxigenic Vibrio cholerae O1 to physico-chemical stresses in aquatic environments. J. Hyg. (Lond.). 1984; 93: 475-95.
- Odić D., Turk V., Stopar D. Environmental stress determines quality of bacterial lysate and its utilization efficiency in a simple microbial loop. Microbiol. Ecol. 2007; 53: 639-64. doi: 10.1007/s00248-006-9143-8
- Vimont S., Berche P. NhaA, an Na+/H+ antiporter involved in environmental survival of Vibrio cholerae. J. Bacteriol. 2000; 182: 2937-44.
- Pflughoeft K.J., Kierek K., Watnick P.I. Role of ectoine in Vibrio cholerae osmoadaptation. Appl. Environ. Microbiol. 2003; 69: 5919-27. doi: 10.1128/AEM.69.10.5919-5927.2003
- Wood J.M., Bremer E., Csonka L.N., Kraemer R., Poolman B., van der Heide T. et al. Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp. Biochem. Physiol. Pt A: Mol. Integr. Physiol. 2001; 130: 437-60. DOI: 10/1016/S1095-6433-(01)00442-1
- Hengge-Aronis R. Recent insights into the general stress response regulatory network in Escherichia coli. J. Mol. Microbiol. Biotechnol. 2002; 4: 341-6.
- Wood J.M. Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annu. Rev. Microbiol. 2011; 65: 215-38. doi: 10.1146/annurev-micro-090110-102815
- Wargo M.J. Choline catabolism to glycine betaine contributes to Pseudomonas aeruginosa survival during murine lung infection. PLoS One. 2013; 8: e56850. doi: 10.1371/journal.pone.0056850
- Современная микробиология. Прокариоты / Под ред. Й. Ленгелера, Г. Древса, Г. Шлегеля. М.: Мир; 2005; т. 1-2.
- Sleator R.D., Hill C. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 2002; 26: 49-71. DOI: http://dx.doi.org/10.1111/j.1574-6976.2002.tb00598.x
- He Z., Zhou A., Baidoo E., He Q., Joachimiak M.P., Benke P. et al. Global transcriptional, physiological, and metabolite analyses of the responses of Desulfovibrio vulgaris Hildenborough to salt adaptaadaptation. Appl. Environ. Microbiol. 2010; 76: 1574-86. doi: 10.1128/AEM.02141-09
- Селиванова Е.А. Механизмы выживания микроорганизмов в гиперосмотических условиях. Бюллетень Оренбургского научного центра УрО РАН. 2012; 3: 1-10. (электронный журнал, http://www.elmag.uran.ru, дата обращения 5.04.2016).
- Altendorf K., Booth I.R., Gralla J.D., Greie J.C., Rosenthal A.Z., Wood J.M. Osmotic stress. EcoSal Plus. 2013; 1-41. doi: 10.1128/ecosalplus.5.4.5
- Igarashi K., Kashiwagi K. Polyamines: mysterious modulators of cellular functions. Biochem. Biophys. Res. Commun. 2000; 271: 559-64. doi: 10.1006/bbrc.2000.2601
- Lequette Y., Rollet E., Delangle A., Greenberg E.P., Bohin J.P. Linear osmoregulated periplasmic glucans are encoded by the opgGH locus of Pseudomonas aeruginosa. Microbiology. 2007; 153: 3255-63. doi: 10.1099/mic.0.2007/008953-0
- Cayley D.S., Guttman H.J., Record M.T. Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. Biophys. J. 2000; 78: 1748-64.
- Faruque S.M., Biswas K., Udden S.M., Ahmad Q.S., Sack D.A., Nair G.B. et al. Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc. Natl. Acad. Sci. USA. 2006; 103: 6350-5. doi: 10.1073/pnas.0601277103
- Teschler J.K., Zamorano-S@ánchez D., Utada A.S., Warner C.J.A., Wong G.C.L., Linington R.G. et al. Living in the matrix: assembly and control of Vibrio cholerae biofilms. Microbiol. 2015; 13: 255-68. doi: 10.1038/nmicro3433
- Jubelin G., Vianney A., Beloin C., Ghigo J.M., Lazzaroni J.C., Lejeune P. et al. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J. Bacteriol. 2005; 187: 2038-49. doi: 10.1128/JB.187.6.2038-2049.2005
- Coyne V.E., al-Harthi L. Induction of melanin biosynthesis in Vibrio cholerae. Appl. Environ. Microbiol. 1992; 58: 2861-5.
- Chakrabarti A.K., Chaudhuri K., Sen K., Das J. Porins of Vibrio cholerae: purification and characterization of OmpU.J. Bacteriol. 1996; 17: 524-30.
- Cai S.J., Inouye M. EnvZ-OmpR interaction and osmoregulation in Escherichia coli. J. Biol. Chem. 2002; 277: 24155-61. doi: 10.1074/jbc.M110715200
- Hernandez-Alles S., Alberti S., Alvarez D., Domenech-Sanchez A., Martinez-Martinez L., Gil J. et al. Porin expression in clinical isolates of Klebsiella pneumoniae. Microbiology. 1999; 145: 673-9. doi: 10.1099/13500872-145-3-673
- Xu C., Ren H., Wang S., Peng X. Proteomic analysis of salt-sensitive outer membrane proteins of Vibrio parahaemolyticus. Res. Microbiol. 2004; 155: 835-42. doi: 10.1016/j.resmic.2004.07.001
- Xu C., Wang S., Ren H., Lin X., Wu L., Peng X. Proteomic analysis on the expression of outer membrane proteins of Vibrio alginolyticus at different sodium concentrations. Proteomics. 2005; 5: 3142-52. doi: 10.1002/pmic.200401128
- Fu X., Liang W., Du P., Yan M., Kan B. Transcript changes in Vibrio cholerae in response to salt stress. Gut Pathogens. 2014; 6: 1-6. doi: 10.1186/s13099-014-0047-8
- Hosseinkhan N., Zarrineh P., Rokni-Zadeh H., Ashouri M.R., Masoudi-Nejad A. Co-expressional conservation in virulence and stress related genes of three Gamma Proteobacterial species: Escherichia coli, Salmonella enterica and Pseudomonas aeruginosa. Mol. BioSyst. 2015; 11(11): 3137-48. doi: 10.1039/C5MB00353A
- Cebrian G., Arroyo C., Condon S., Manas P. Osmotolerance provided by the alternative sigma factors sB and rpoS to Staphylococcus aureus and Escherichia coli is solute dependent and does not result in an increased growth fitness in NaCl containing media. Int. J. Food Microbiol. 2015; 214: 83-90. doi: 10.1016/j.ijfoodmicro.2015.07.011
- Schlosser A., Meldorf M., Stumpe S., Bakker E.P., Epstein W. TrkH and its homolog. TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli. J. Bacteriol. 1995; 177: 1908-10.
- Sleator R.D., Hill C. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 2002; 26: 49-71. DOI: http://dx.doi.org/10.1111/j.1574-6976.2002.tb00598.x
- Sato Y., Nanatani K., Hamamoto S., Shimizu M., Takahashi M., Tabuchi-Kobayashi M. et al. Defining membrane spanning domains and crucial membrane-localized acidic amino acid residues for K+ transport of a Kup/HAK/KT-type Escherichia coli potassium transporter. J. Biochem. 2014; 155: 315-23. doi: 10.1093/jb/mvu007
- Harms C., Domoto Y., Celik C., Rahe E., Stumpe S., Schmid R. et al. Identification of the ABC protein SapD as the subunit that confers ATP dependence to the K+-uptake systems TrkH and TrkG from Escherichia coli K-12. Microbiology. 2001; 147: 2991-3003. doi: 10.1099/00221287-147-11-2991
- Greie J.C., Altendorf K. The K+-translocating KdpFABC complex from Escherichia coli: A P-type ATPase with unique features. J. Bioenerg. Biomembr. 2007; 39: 397-402. doi: 10.1007/s10863-007-9111-0
- Trchounian A., Kobayashi H. Kup is the major K+ uptake system in Escherichia coli upon hyper-osmotic stress at low pH. FEBS Lett. 1999; 447: 144-8. doi: 10.1016/S0014-5793(99)00288-4
- Widderich N., Kobus S., Höppner A., Riclea R., Seubert A., Dickschat J.S. et al. Biochemistry and crystal structure of ectoine synthase: a metal-containing member of the cupin superfamily. PLoS One. 2016; 11(3): e0151285. doi: 10.1371/journal.pone.0151285
- Kapfhammer D., Karatan E., Pflughoeft K.J., Watnick P.I. Role for glycine betaine transport in Vibrio cholerae osmoadaptation and biofilm formation within microbial communities. Appl. Environ. Microbiol. 2005; 74: 3840-7. doi: 10.1128/AEM.71.7.3840-3847.2005
- Shikuma N.J., Davis K.R., Fong J.N.C., Yildiz F.H. The transcriptional regulator, CosR, controls compatible solute biosynthesis and transport, motility and biofilm formation in Vibrio cholerae. Environ. Microbiol. 2013; 15: 1387-99. doi: 10.1111/j.1462-2920.2012.02805.x
- Dunlap P.V. OscR, a new osmolarity-responsive regulator in Vibrio cholerae. J. Bacteriol. 2009; 191: 4053-5. doi: 10.1128/JB.00501-09
补充文件
