The role of rehabilitation aimed at improving bone function in cancer patients with bone tissue damage

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

According to WHO data for 2016, cancer-related mortality occupies a leading place in the world. Oncological diseases often lead to damage and changes in the bone system, reducing the quality of life and exposing patients to an increased risk of developing bone-related complications. Bone metastasis is a common complication in solid tumors, most common in cases of prostate cancer (85%), breast (70%), lung (40%), and kidney (40%). The purpose of the review is to summarize current literature data on the role of non-pharmacological and pharmacological treatment methods in improving bone function in patients with metastatic bone damage, as well as to identify knowledge gaps that require further research. Bone metastases are a serious problem in the treatment of cancer, often causing severe pain. Bone metastases can significantly disrupt the structural integrity of bones, leading to a number of consequences. Rehabilitation programs involving physical exercises have demonstrated high effectiveness in patients with bone metastases. These programs not only contribute to the preservation and improvement of bone health, but also improve the quality of life of patients. Quitting smoking and reducing alcohol consumption are essential components of health management, especially for patients at risk of developing osteoporosis and fractures. Patients should receive sufficient amounts of these nutrients to maintain normal levels of ionized calcium. This review indicates the positive effect of physical exercise, the use of calcium and vitamin D, smoking cessation and alcohol consumption on the physical activity of patients. Based on the data available to date, it has been proven that proper exercise prescribed by specialists in compliance with safety measures does not have negative consequences for patients with cancer and bone metastases, osteoporosis/osteopenia, or those at risk of bone loss.

About the authors

Almaz Kh. Islamgulov

Bashkir State Medical University

Author for correspondence.
Email: aslmaz2000@rambler.ru
ORCID iD: 0000-0003-0567-7515
SPIN-code: 8701-3486

assistant of the department of microbiology, virology

Russian Federation, 47 Zaki Validi str., Ufa, 450008

Mark V. Pervakov

Mechnikov Northwestern State Medical University

Email: mark_p@bk.ru
ORCID iD: 0009-0004-1577-2430

student

Russian Federation, Saint Petersburg

Olga O. Fominova

Burdenko Voronezh State Medical University

Email: olya_bubu_00@bk.ru
ORCID iD: 0000-0002-7644-5271

student

Russian Federation, Voronezh

Ekaterina S. Ryabchinskaya

Rostov State Medical University

Email: Progesteroni@yandex.ru
ORCID iD: 0009-0009-2249-4180

student

Russian Federation, Rostov-on-Don

Dzhavgarat M. Taimaskhanova

Razumovsky Saratov State Medical University

Email: djavgarat221101@gmail.com
ORCID iD: 0009-0007-4360-0654

student

Russian Federation, Saratov

Andreina A. Kovaleva

Vernadsky Crimean Federal University

Email: andreina.kovaleva.03@bk.ru
ORCID iD: 0009-0009-2790-5639

student

Russian Federation, Simferopol

Anastasia A. Erusenko

Rostov State Medical University

Email: erusenkon18@mail.ru
ORCID iD: 0009-0000-1288-9239

student

Russian Federation, Rostov-on-Don

Anastasia S. Gelina

Rostov State Medical University

Email: nastyagelina17021610@gmail.com
ORCID iD: 0009-0005-1856-8715

student

Russian Federation, Rostov-on-Don

Svetlana A. Khachaturyan

Rostov State Medical University

Email: khachaturyansv@yandex.ru
ORCID iD: 0009-0001-0425-5655

student

Russian Federation, Rostov-on-Don

Polina A. Shiyan

Russian University of Medicine

Email: Shiyan_polina17@mail.ru
ORCID iD: 0009-0008-5352-236X

student

Russian Federation, Moscow

Abdul Kh. Zamaykhanov

Rostov State Medical University

Email: zamayhanov_1@mail.ru
ORCID iD: 0009-0002-7250-8228

student

Russian Federation, Rostov-on-Don

Karema A. Kirkhlyarova

Rostov State Medical University

Email: karema.kirhlyarova@gmail.com
ORCID iD: 0009-0001-6915-0790

student

Russian Federation, Rostov-on-Don

Akbar A. Saidov

Bashkir State Medical University

Email: akbarsaidov2002@gmail.com
ORCID iD: 0009-0007-3156-8271

student

Russian Federation, 47 Zaki Validi str., Ufa, 450008

Tatyana V. Komysheva

Bashkir State Medical University

Email: komyshevatv2020@gmail.com
ORCID iD: 0009-0007-0605-4770

student

Russian Federation, 47 Zaki Validi str., Ufa, 450008

References

  1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–263. doi: 10.3322/caac.21834
  2. Galieva GA, Mirsaeva GK, Fazlyeva RM, et al. Comparative study of myocardial damage in hantavirus and new coronavirus infection. Meditsinskiy sovet. 2023;(6):44–50. doi: 10.21518/ms2023-055
  3. Merabishvili VM. Patterns of dynamics of mortality rates of the Russian population by age from malignant neoplasms. Advances in Gerontology. 2019;32(3):301–310. EDN: TWYXTD
  4. Coleman RE, Croucher PI, Padhani AR, et al. Bone metastases. Nat Rev Dis Primers. 2020;6(1):83. doi: 10.1038/s41572-020-00216-3
  5. Batson OV. The function of the vertebral veins and their role in the spread of metastases. Ann Surg. 1940;112(1):138–149. doi: 10.1097/00000658-194007000-00016
  6. Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat Rev Cancer. 2011;11(6):411–425. doi: 10.1038/nrc3055
  7. Galvão DA, Taaffe DR, Spry N, et al. Exercise Preserves Physical Function in Prostate Cancer Patients with Bone Metastases. Med Sci Sports Exerc. 2018;50(3):393–399. doi: 10.1249/MSS.0000000000001454
  8. Zimmer P, Trebing S, Timmers-Trebing U, et al. Eight-week, multimodal exercise counteracts a progress of chemotherapy-induced peripheral neuropathy and improves balance and strength in metastasized colorectal cancer patients: a randomized controlled trial. Support Care Cancer. 2018;26(2):615–624. doi: 10.1007/s00520-017-3875-5
  9. Gil Herrero L, McNeely ML, Courneya KS, et al. Safety, feasibility, and effectiveness of implementing supervised exercise into the clinical care of individuals with advanced cancer. Clin Rehabil. 2022;36(12):1666–1678. doi: 10.1177/02692155221114556
  10. Hanson ED, Alzer M, Carver J, et al. Feasibility of home-based exercise training in men with metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis. 2023;26(2):302–308. doi: 10.1038/s41391-022-00523-8
  11. Scott JM, Iyengar NM, Nilsen TS, et al. Feasibility, safety, and efficacy of aerobic training in pretreated patients with metastatic breast cancer: A randomized controlled trial. Cancer. 2018;124(12):2552–2560. doi: 10.1002/cncr.31368
  12. Avancini A, Benato G, Borsati A, et al. Exercise and Bone Health in Cancer: Enemy or Ally? Cancers (Basel). 2022;14(24):6078. doi: 10.3390/cancers14246078
  13. Stepanova AM, Merzlyakova AM, Khulamkhanova MM. Early postoperative rehabilitation and its remote functional results in patients with tumors of the axial skeleton. Malignant tumors. 2018;8(3s1):12–16. (In Russ.).
  14. Avancini A, Pala V, Trestini I, et al. Exercise Levels and Preferences in Cancer Patients: A Cross-Sectional Study. Int J Environ Res Public Health. 2020;17(15):5351. doi: 10.3390/ijerph17155351
  15. Bukharov A, Derzhavin V, Kaprin A, et al. Study of the mechanisms of metastasis of malignant tumors to bones. Issues of oncology. 2022;68(4):393–402. doi: 10.37469/0507-3758-2022-68-4-393-402
  16. Virk MS, Lieberman JR. Tumor metastasis to bone. Arthritis Res Ther. 2007;9 Suppl 1(Suppl 1):S5. doi: 10.1186/ar2169
  17. Hong S, Youk T, Lee SJ, Kim KM, Vajdic CM. Bone metastasis and skeletal-related events in patients with solid cancer: A Korean nationwide health insurance database study. PLoS One. 2020;15(7):e0234927. doi: 10.1371/journal.pone.0234927
  18. Miyashita H, Cruz C, Smith C. Risk factors of skeletal-related events in patients with bone metastasis from non-small cell lung cancer undergoing treatment with zoledronate-a post hoc analysis of a randomized clinical trial. Support Care Cancer. 2021;29(3):1629–1633. doi: 10.1007/s00520-020-05665-w
  19. Coleman R, Hadji P, Body JJ, et al. Bone health in cancer: ESMO Clinical Practice Guidelines. Ann Oncol. 2020;31(12):1650–1663. doi: 10.1016/j.annonc.2020.07.019
  20. Reuss-Borst M, Hartmann U, Scheede C, Weiß J. Prevalence of osteoporosis among cancer patients in Germany: prospective data from an oncological rehabilitation clinic. Osteoporos Int. 2012;23(4):1437–1444. doi: 10.1007/s00198-011-1724-9
  21. Lane NE. Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol. 2006;194(2 Suppl):S3–S11. doi: 10.1016/j.ajog.2005.08.047
  22. Galchenko AV. Influence of lifestyle factors on bone metabolism and the risk of osteoporosis. Russian Journal of Preventive Medicine. 2022;25(6):96–107. doi: 10.17116/profmed20222506196
  23. Shapiro CL, Van Poznak C, Lacchetti C, et al. Management of Osteoporosis in Survivors of Adult Cancers With Nonmetastatic Disease: ASCO Clinical Practice Guideline. J Clin Oncol. 2019;37(31):2916–2946. doi: 10.1200/JCO.19.01696
  24. Morote J, Orsola A, Abascal JM, et al. Bone mineral density changes in patients with prostate cancer during the first 2 years of androgen suppression. J Urol. 2006;175(5):1679–1683. doi: 10.1016/S0022-5347(05)00999-7
  25. Shapiro CL. Osteoporosis: A Long-Term and Late-Effect of Breast Cancer Treatments. Cancers (Basel). 2020;12(11):3094. doi: 10.3390/cancers12113094
  26. Yuan F, Wang Y, Xiao X, et al. A systematic review evaluating the effectiveness of exercise training on physical condition in prostate cancer patients undergoing androgen deprivation therapy. Transl Androl Urol. 2023;12(8):1336–1350. doi: 10.21037/tau-23-272
  27. Komori T. Glucocorticoid Signaling and Bone Biology. Horm Metab Res. 2016;48(11):755–763. doi: 10.1055/s-0042-110571
  28. Compston J. Glucocorticoid-induced osteoporosis: an update. Endocrine. 2018;61(1):7–16. doi: 10.1007/s12020-018-1588-2
  29. Compston J. Glucocorticoid-induced osteoporosis: an update. Endocrine. 2018;61(1):7–16. doi: 10.1007/s12020-018-1588-2
  30. Shapiro CL, Manola J, Leboff M. Ovarian failure after adjuvant chemotherapy is associated with rapid bone loss in women with early-stage breast cancer. J Clin Oncol. 2001;19(14):3306–3311. doi: 10.1200/JCO.2001.19.14.3306
  31. Wang T, Yu X, He C. Pro-inflammatory Cytokines: Cellular and Molecular Drug Targets for Glucocorticoid-induced-osteoporosis via Osteocyte. Curr Drug Targets. 2019;20(1):1–15. doi: 10.2174/1389450119666180405094046
  32. Wang T, Yu X, He C. Pro-inflammatory Cytokines: Cellular and Molecular Drug Targets for Glucocorticoid-induced-osteoporosis via Osteocyte. Curr Drug Targets. 2019;20(1):1–15. doi: 10.2174/1389450119666180405094046
  33. Yumura Y, Takeshima T, Komeya M, et al. Long-Term Fertility Function Sequelae in Young Male Cancer Survivors. World J Mens Health. 2023;41(2):255–271. doi: 10.5534/wjmh.220102
  34. Qu N, Itoh M, Sakabe K. Effects of Chemotherapy and Radiotherapy on Spermatogenesis: The Role of Testicular Immunology. Int J Mol Sci. 2019;20(4):957. doi: 10.3390/ijms20040957
  35. Stuart NS, Woodroffe CM, Grundy R, Cullen MH. Long-term toxicity of chemotherapy for testicular cancer — the cost of cure. Br J Cancer. 1990;61(3):479–484. doi: 10.1038/bjc.1990.106
  36. Duncan Bassett JH, Williams GR. Analysis of Physiological Responses to Thyroid Hormones and Their Receptors in Bone. Methods Mol Biol. 2018;1801:123–154. doi: 10.1007/978-1-4939-7902-8_12
  37. Chernykh TM, Volynkina AP, Gorshkov IP, Zakharchenko AV. Bone metabolism disorders in patients with thyroid dysfunction. Osteoporosis and osteopathy. 2016;19(2):59–60. (In Russ.) doi: 10.14341/osteo2016259-60
  38. Delitala AP, Scuteri A, Doria C. Thyroid Hormone Diseases and Osteoporosis. J Clin Med. 2020;9(4):1034. doi: 10.3390/jcm9041034
  39. Nishimoto H, Inui A, Mifune Y, et al. Treatment of Osteoporosis in Men on Androgen Deprivation Therapy in Japan. Medicina (Kaunas). 2024;60(4):551. doi: 10.3390/medicina60040551
  40. Gong J, Payne D, Caron J, et al. Reduced Cardiorespiratory Fitness and Increased Cardiovascular Mortality After Prolonged Androgen Deprivation Therapy for Prostate Cancer. JACC CardioOncol. 2020;2(4):553–563. doi: 10.1016/j.jaccao.2020.08.011
  41. Eastell R, Adams JE, Coleman RE, et al. Effect of anastrozole on bone mineral density: 5-year results from the anastrozole, tamoxifen, alone or in combination trial 18233230. J Clin Oncol. 2008;26(7):1051–1057. doi: 10.1200/JCO.2007.11.0726
  42. Malagrinò M, Zavatta G. Review of bone health in women with estrogen receptor-positive breast cancer receiving endocrine therapy. Womens Health (Lond). 2023;19:17455057221149493. doi: 10.1177/17455057221149493
  43. Zhu Y, Koleck TA, Bender CM, Conley YP. Genetic Underpinnings of Musculoskeletal Pain During Treatment With Aromatase Inhibitors for Breast Cancer: A Biological Pathway Analysis. Biol Res Nurs. 2020;22(2):263–276. doi: 10.1177/1099800419895114
  44. Amir E, Seruga B, Niraula S, Carlsson L, Ocaña A. Toxicity of adjuvant endocrine therapy in postmenopausal breast cancer patients: a systematic review and meta-analysis. J Natl Cancer Inst. 2011;103(17):1299–1309. doi: 10.1093/jnci/djr242
  45. Yoneda T, Hiasa M, Okui T, Hata K. Cancer-nerve interplay in cancer progression and cancer-induced bone pain. J Bone Miner Metab. 2023;41(3):415–427. doi: 10.1007/s00774-023-01401-6
  46. Yang Y, Yang W, Zhang R, Wang Y. Peripheral Mechanism of Cancer-Induced Bone Pain. Neurosci Bull. 2024;40(6):815–830. doi: 10.1007/s12264-023-01126-6
  47. Rajeswaran T, Wong HCY, Zhang E, et al. Quality of life issues in patients with bone metastases: A systematic review. Support Care Cancer. 2023;32(1):18. doi: 10.1007/s00520-023-08241-0
  48. Vakiti A, Anastasopoulou C, Mewawalla P. Malignancy-Related Hypercalcemia. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
  49. Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ 3rd. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res. 1992;7(2):221–227. doi: 10.1002/jbmr.5650070214
  50. Campbell KL, Winters-Stone KM, Wiskemann J, et al. Exercise Guidelines for Cancer Survivors: Consensus Statement from International Multidisciplinary Roundtable. Med Sci Sports Exerc. 2019;51(11):2375–2390. doi: 10.1249/MSS.0000000000002116
  51. Kanis JA, Hans D, Cooper C, et al. Interpretation and use of FRAX in clinical practice. Osteoporos Int. 2011;22(9):2395–2411. doi: 10.1007/s00198-011-1713-z
  52. Jawad MU, Scully SP. In brief: classifications in brief: Mirels’ classification: metastatic disease in long bones and impending pathologic fracture. Clin Orthop Relat Res. 2010;468(10):2825–2827. doi: 10.1007/s11999-010-1326-4
  53. Desai VS, Amendola RL, Mann KA, Damron TA. Internal validation of modified Mirels’ scoring system for pathologic femur fractures. BMC Musculoskelet Disord. 2024;25(1):719. doi: 10.1186/s12891-024-07836-w
  54. Wang Y, Yu P, Liu F, Wang Y, Zhu J. Clinical value of ultrasound for the evaluation of local recurrence of primary bone tumors. Front Oncol. 2022;12:902317. doi: 10.3389/fonc.2022.902317
  55. Löffler MT, Sollmann N, Mei K, et al. X-ray-based quantitative osteoporosis imaging at the spine. Osteoporos Int. 2020;31(2):233–250. doi: 10.1007/s00198-019-05212-2
  56. Bansal A, Dhamija E, Chandrashekhara SH, Sahoo RK. Role of CT in the detection and management of cancer related complications: a study of 599 patients. Ecancermedicalscience. 2023;17:1529. doi: 10.3332/ecancer.2023.1529
  57. Valeev AI, Malov AA. The role of magnetic resonance imaging in the diagnosis of malignant bone neoplasms. Current state of an issue. Russian Journal of Pediatric Hematology and Oncology. 2020;7(4):77–81. doi: 10.21682/2311-1267-2020-7-4-77-81
  58. Sangondimath G, Sen RK, T FR. DEXA and Imaging in Osteoporosis. Indian J Orthop. 2023;57(1):82–93. doi: 10.1007/s43465-023-01059-2
  59. Petraikin AV, Artyukova ZR, Kudryavtsev ND, et al. Analysis of Age Distribution of Bone Mineral Density by Dual-Energy X-Ray Absorptiometry. Journal of radiology and nuclear medicine. 2023;104(1):21–29. doi: 10.20862/0042-4676-2023-104-1-21-29
  60. Peppone LJ, Mustian KM, Janelsins MC, et al. Effects of a structured weight-bearing exercise program on bone metabolism among breast cancer survivors: a feasibility trial. Clin Breast Cancer. 2010;10(3):224–229. doi: 10.3816/CBC.2010.n.030
  61. Mosti MP, Kaehler N, Stunes AK, Hoff J, Syversen U. Maximal strength training in postmenopausal women with osteoporosis or osteopenia. J Strength Cond Res. 2013;27(10):2879–2886. doi: 10.1519/JSC.0b013e318280d4e2
  62. Singh B, Toohey K. The effect of exercise for improving bone health in cancer survivors — A systematic review and meta-analysis. J Sci Med Sport. 2022;25(1):31–40. doi: 10.1016/j.jsams.2021.08.008
  63. Bemben DA, Bemben MG. Dose-response effect of 40 weeks of resistance training on bone mineral density in older adults. Osteoporos Int. 2011;22(1):179–186. doi: 10.1007/s00198-010-1182-9
  64. Robling AG, Daly R, Fuchs RK, Burr DB. Basic and Applied Bone Biology. Elsevier. Mechanical adaptation; 2019;203–233.
  65. Campbell KL, Winters-Stone KM, Wiskemann J, et al. Exercise Guidelines for Cancer Survivors: Consensus Statement from International Multidisciplinary Roundtable. Med Sci Sports Exerc. 2019;51(11):2375–2390. doi: 10.1249/MSS.0000000000002116
  66. Beck BR, Daly RM, Singh MA, Taaffe DR. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J Sci Med Sport. 2017;20(5):438–445. doi: 10.1016/j.jsams.2016.10.001
  67. Campbell KL, Cormie P, Weller S, et al. Exercise Recommendation for People with Bone Metastases: Expert Consensus for Health Care Providers and Exercise Professionals. JCO Oncol Pract. 2022;18(5):e697–e709. doi: 10.1200/OP.21.00454
  68. Hart NH, Poprawski DM, Ashbury F, et al. Exercise for people with bone metastases: MASCC endorsed clinical recommendations developed by the International Bone Metastases Exercise Working Group. Support Care Cancer. 2022;30(9):7061–7065. doi: 10.1007/s00520-022-07212-1
  69. Park S, Kim JY, Lee JC, et al. Mobile Phone App-Based Pulmonary Rehabilitation for Chemotherapy-Treated Patients With Advanced Lung Cancer: Pilot Study. JMIR Mhealth Uhealth. 2019;7(2):e11094. doi: 10.2196/11094
  70. Yee J, Davis GM, Hackett D, et al. Physical Activity for Symptom Management in Women With Metastatic Breast Cancer: A Randomized Feasibility Trial on Physical Activity and Breast Metastases. J Pain Symptom Manage. 2019;58(6):929–939. doi: 10.1016/j.jpainsymman.2019.07.022
  71. Cheville AL, Kollasch J, Vandenberg J, et al. A home-based exercise program to improve function, fatigue, and sleep quality in patients with Stage IV lung and colorectal cancer: a randomized controlled trial. J Pain Symptom Manage. 2013;45(5):811–821. doi: 10.1016/j.jpainsymman.2012.05.006
  72. Cheville AL, Moynihan T, Herrin J, Loprinzi C, Kroenke K. Effect of Collaborative Telerehabilitation on Functional Impairment and Pain Among Patients With Advanced-Stage Cancer: A Randomized Clinical Trial. JAMA Oncol. 2019;5(5):644–652. doi: 10.1001/jamaoncol.2019.0011
  73. De Lazzari N, Niels T, Tewes M, Götte M. A Systematic Review of the Safety, Feasibility and Benefits of Exercise for Patients with Advanced Cancer. Cancers (Basel). 2021;13(17):4478. doi: 10.3390/cancers13174478
  74. Groarke JD, Payne DL, Claggett B, et al. Association of post-diagnosis cardiorespiratory fitness with cause-specific mortality in cancer. Eur Heart J Qual Care Clin Outcomes. 2020;6(4):315–322. doi: 10.1093/ehjqcco/qcaa015
  75. Al-Bashaireh AM, Haddad LG, Weaver M, et al. The Effect of Tobacco Smoking on Bone Mass: An Overview of Pathophysiologic Mechanisms. J Osteoporos. 2018;2018:1206235. doi: 10.1155/2018/1206235
  76. Pompe E, Bartstra J, Verhaar HJ, et al. Bone density loss on computed tomography at 3-year follow-up in current compared to former male smokers. Eur J Radiol. 2017;89:177–181. doi: 10.1016/j.ejrad.2017.02.011
  77. Sampson HW. Alcohol’s harmful effects on bone. Alcohol Health Res World. 1998;22(3):190–194.
  78. Goryachev DN, Mukhamedzhanov LR. Mechanisms of development of alcohol-dependent osteoporosis. Kazan Medical Journal. 2012;93(1):120–121. EDN: OWGNJZ
  79. US Preventive Services Task Force; Grossman DC, Curry SJ, et al. Vitamin D, Calcium, or Combined Supplementation for the Primary Prevention of Fractures in Community-Dwelling Adults: US Preventive Services Task Force Recommendation Statement. JAMA. 2018;319(15):1592–1599. doi: 10.1001/jama.2018.3185
  80. Yao P, Bennett D, Mafham M, et al. Vitamin D and Calcium for the Prevention of Fracture: A Systematic Review and Meta-analysis. JAMA Netw Open. 2019;2(12):e1917789. doi: 10.1001/jamanetworkopen.2019.17789
  81. Harrington M, Cashman KD. High salt intake appears to increase bone resorption in postmenopausal women but high potassium intake ameliorates this adverse effect. Nutr Rev. 2003;61(5 Pt 1):179–183. doi: 10.1301/nr.2003.may.179-183
  82. Jing D, Zhao Q, Zhao Y, et al. Management of pain in patients with bone metastases. Front Oncol. 2023;13:1156618. doi: 10.3389/fonc.2023.1156618
  83. Chapman EJ, Edwards Z, Boland JW, et al. Practice review: Evidence-based and effective management of pain in patients with advanced cancer. Palliat Med. 2020;34(4):444–453. doi: 10.1177/0269216319896955
  84. Coleman RE, McCloskey EV. Bisphosphonates in oncology. Bone. 2011;49(1):71–76. doi: 10.1016/j.bone.2011.02.003
  85. Rosen LS, Gordon D, Kaminski M, et al. Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter, comparative trial. Cancer. 2003;98(8):1735–1744. doi: 10.1002/cncr.11701
  86. Dhabhar B. Cancer Treatment-Induced Bone Loss: Role of Denosumab in Non-Metastatic Breast Cancer. Breast Cancer (Dove Med Press). 2022;14:163–173. doi: 10.2147/BCTT.S353332
  87. Alonso-Rodriguez E, González-Martín-Moro J, Cebrián-Carretero JL, et al. Bisphosphonate-related osteonecrosis. Application of adipose-derived stem cells in an experimental murine model. Med Oral Patol Oral Cir Bucal. 2019;24(4):e529–e536. doi: 10.4317/medoral.22959

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The algorithm for selecting primary sources.

Download (272KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».