Физическая активность как регулятор ремоделирования миокарда: от клеточных механизмов к клиническим рекомендациям
- Авторы: Идигов М.Х.1, Ширханян С.Г.1, Галимов А.Р.2, Хечумян А.А.1, Хошафян А.О.1, Пашаев Г.В.1, Мамедханова А.А.1, Мамедов М.С.1, Мамедханов А.А.1, Канкаева А.В.1, Сусарова А.М.1, Минаев Д.В.1, Левдик И.Ю.3, Петрова А.О.4, Алиев М.В.5
-
Учреждения:
- Ростовский государственный медицинский университет
- Башкирский государственный медицинский университет
- Дальневосточный государственный медицинский университет
- Самарский государственный медицинский университет
- Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова
- Выпуск: Том 27, № 4 (2024)
- Страницы: 181-197
- Раздел: Научный обзор
- URL: https://journal-vniispk.ru/1560-9537/article/view/312037
- DOI: https://doi.org/10.17816/MSER663975
- ID: 312037
Цитировать
Аннотация
Кардиореабилитация представляет собой эффективный метод восстановления и улучшения функций сердечно-сосудистой системы у пациентов с сердечно-сосудистыми заболеваниями. Реабилитационные упражнения не только способствуют повышению физической выносливости и улучшению психоэмоционального состояния пациентов, но и играют ключевую роль в ремоделировании миокарда. В данной статье рассматриваются молекулярные и клеточные механизмы, через которые физическая активность влияет на восстановление сердечной ткани, включая регуляцию апоптоза кардиомиоцитов, ангиогенеза, фиброза и воспалительных процессов. Проанализированы данные современных исследований, подтверждающих положительное влияние физических нагрузок на морфофункциональное состояние сердца, а также перспективы применения реабилитационных тренировок в качестве вспомогательной стратегии для оптимизации ремоделирования миокарда. Особое внимание уделяется механизму регуляции некодирующими РНК, сигнальным путям и межклеточным взаимодействиям. Выявлены пробелы в изучении механизмов влияния физических нагрузок на патологическое ремоделирование сердца, что требует дальнейших исследований. Применение современных методов, таких как высокопроизводительное секвенирование и анализ отдельных клеток, может открыть новые перспективы в изучении механизмов, обусловливающих благоприятное влияние реабилитационных упражнений. Эти технологии позволят детализировать механизмы адаптации сердечно-сосудистой системы к физической нагрузке и выявить потенциальные терапевтические мишени для разработки новых лекарственных препаратов и немедикаментозных вмешательств.
Полный текст
Открыть статью на сайте журналаОб авторах
Магомед-Эми Хаважиевич Идигов
Ростовский государственный медицинский университет
Email: maga707q@mail.ru
ORCID iD: 0009-0002-9705-2255
студент
Россия, Ростов-на-ДонуСофия Гевондовна Ширханян
Ростовский государственный медицинский университет
Email: goldensofii@gmail.com
ORCID iD: 0009-0007-7991-0515
студент
Россия, Ростов-на-ДонуАйрат Рамирович Галимов
Башкирский государственный медицинский университет
Автор, ответственный за переписку.
Email: galimovajrat457@gmail.com
ORCID iD: 0000-0003-4403-0204
SPIN-код: 8742-4109
канд. мед. наук, доцент
Россия, УфаАнгелина Артуровна Хечумян
Ростовский государственный медицинский университет
Email: angelina.koroleva.2016@yandex.ru
ORCID iD: 0009-0006-4262-1712
студент
Россия, Ростов-на-ДонуАмбарцум Олегович Хошафян
Ростовский государственный медицинский университет
Email: a-khoshafyan@mail.ru
ORCID iD: 0009-0003-5786-6059
студент
Россия, Ростов-на-ДонуГасан Валех оглы Пашаев
Ростовский государственный медицинский университет
Email: pasaevgasan54@gmail.com
ORCID iD: 0009-0003-3014-3555
студент
Россия, Ростов-на-ДонуАмина Азаматовна Мамедханова
Ростовский государственный медицинский университет
Email: amina.mamedkhanova@mail.ru
ORCID iD: 0009-0008-6786-642X
студент
Россия, Ростов-на-ДонуМамед Саидович Мамедов
Ростовский государственный медицинский университет
Email: Mamedov.939@mail.ru
ORCID iD: 0009-0005-6292-4297
студент
Россия, Ростов-на-ДонуАнар Азаматович Мамедханов
Ростовский государственный медицинский университет
Email: amamedkhanov.dok@mail.ru
ORCID iD: 0009-0009-3231-4681
студент
Россия, Ростов-на-ДонуАйса Валерьевна Канкаева
Ростовский государственный медицинский университет
Email: kankaeva.a@mail.ru
ORCID iD: 0009-0007-6167-0218
студент
Россия, Ростов-на-ДонуАйзан Мурсалиновна Сусарова
Ростовский государственный медицинский университет
Email: aizan.mur@gmail.com
ORCID iD: 0009-0000-4924-1532
студент
Россия, Ростов-на-ДонуДмитрий Валерьевич Минаев
Ростовский государственный медицинский университет
Email: dima.minaev.2000@bk.ru
ORCID iD: 0009-0007-0079-3409
студент
Россия, Ростов-на-ДонуИлья Юрьевич Левдик
Дальневосточный государственный медицинский университет
Email: levdik15@mail.ru
ORCID iD: 0009-0007-3642-6213
студент
Россия, ХабаровскАлена Олеговна Петрова
Самарский государственный медицинский университет
Email: apetroff01@mail.ru
ORCID iD: 0009-0008-5074-3802
студент
Россия, СамараМагомед Вугарович Алиев
Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова
Email: alievm294@gmail.com
ORCID iD: 0009-0006-1747-6197
студент
Россия, Санкт-ПетербургСписок литературы
- Larina VN, Akhmatova FD, Arakelov SE, et al. Modern strategies for cardiac rehabilitation after myocardial infarction and percutaneous coronary intervention. Kardiologiia. 2020;60(3):111–118. doi: 10.18087/cardio.2020.3.n546
- Protasov EА, Velikanov AA. Cardiac rehabilitation today: opportunities and challenges. Russian Family Doctor. 2019;23(1):17–26. doi: 10.17816/RFD2019117-26
- Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407–477. doi: 10.1093/eurheartj/ehz425
- Bubnova MG, Aronov DM. Cardiac rehabilitation: stages, principles and international classification of functioning (ICF). Russian Journal of Preventive Medicine. 2020;23(5):40–49. doi: 10.17116/profmed20202305140
- Fang J, Ayala C, Luncheon C, et al. Use of Outpatient Cardiac Rehabilitation Among Heart Attack Survivors — 20 States and the District of Columbia, 2013 and Four States, 2015. MMWR Morb Mortal Wkly Rep. 2017;66(33):869–873. doi: 10.15585/mmwr.mm6633a1
- Gabrys L, Schmidt C. Prescription and Utilization of Sports Therapy Programs following Cardiac Rehabilitation 2006–2013. Rehabilitation (Stuttg). 2020;59(1):42–47. doi: 10.1055/a-0869-9810
- Pomeshkina SA, Bezzubova VA, Zvereva TN, et al. Factors affecting adherence to physical training in the outpatient phase of rehabilitation, in patients after coronary artery bypass grafting. Kardiologiia. 2022;62(6):37–44. doi: 10.18087/cardio.2022.6.n1756
- Sushchevich DS, Rudchenko IV, Kachnov VA. The effect of physical exercise on metabolism and remodeling of the cardiovascular system. Science of the young (Eruditio Juvenium). 2020;8(3):433–443. doi: 10.23888/HMJ202083433-443
- Baman JR, Sekhon S, Maganti K. Cardiac Rehabilitation. JAMA. 2021;326(4):366. doi: 10.1001/jama.2021.5952
- Piercy KL, Troiano RP. Physical Activity Guidelines for Americans From the US Department of Health and Human Services. Circ Cardiovasc Qual Outcomes. 2018;11(11):e005263. doi: 10.1161/CIRCOUTCOMES.118.005263
- Zhou MC, Hong Y. Updated essentials of scientific exercise and training in the 6th edition of the guidelines for cardiac rehabilitation programs by American Association of Cardiovascular and Pulmonary Rehabilitation [J]. Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease. 2021;29(6):1–6.
- Kakuchaya TT, Dzhitava TG, Pachuashvili NV, et al. Comparative analysis of aerobic cardiorespiratory training of high and moderate intensity in cardiac surgery profile patients. CardioSomatics. 2021;12(4):190–199. doi: 10.17816/22217185.2021.4.201261
- Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):e596–e646. doi: 10.1161/CIR.0000000000000678
- Aronov DM. Methodological issues in the organization and implementation of outpatient rehabilitation exercise programs in patients with different forms of coronary heart disease. CardioSomatics. 2013;4(1):23–28. doi: 10.26442/CS45004
- Feito Y, Heinrich KM, Butcher SJ, Poston WSC. High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports (Basel). 2018;6(3):76. doi: 10.3390/sports6030076
- Ribeiro PAB, Boidin M, Juneau M, et al. High-intensity interval training in patients with coronary heart disease: Prescription models and perspectives. Ann Phys Rehabil Med. 2017;60(1):50–57. doi: 10.1016/j.rehab.2016.04.004
- Kleinnibbelink G, van Dijk APJ, Fornasiero A, et al. Acute exercise-induced changes in cardiac function relates to right ventricular remodeling following 12-wk hypoxic exercise training. J Appl Physiol (1985). 2021;131(2):511–519. doi: 10.1152/japplphysiol.01075.2020
- Zhao S, Zu Y, Lu M, Jia X, Chen X. Effect of Tai Chi on cardiac function in patients with myocardial infarction: A protocol for a randomized controlled trial. Medicine (Baltimore). 2021;100(42):e27446. doi: 10.1097/MD.0000000000027446
- Mao S, Zhang X, Shao B, et al. Baduanjin Exercise Prevents post-Myocardial Infarction Left Ventricular Remodeling (BE-PREMIER trial): Design and Rationale of a Pragmatic Randomized Controlled Trial. Cardiovasc Drugs Ther. 2016;30(3):315–22. doi: 10.1007/s10557-016-6660-7
- Guo Y, Sui JY, Kim K, et al. Cardiomyocyte Homeodomain-Interacting Protein Kinase 2 Maintains Basal Cardiac Function via Extracellular Signal-Regulated Kinase Signaling. Circulation. 2019;140(22):1820–1833. doi: 10.1161/CIRCULATIONAHA.119.040740
- Zhou Q, Deng J, Yao J, et al. Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction. EBioMedicine. 2021;74:103713. doi: 10.1016/j.ebiom.2021.103713
- Shi J, Bei Y, Kong X, Liu X, et al. miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics. 2017;7(3):664–676. doi: 10.7150/thno.15162
- Yu Y, Chen W, Yu M, et al. Exercise-Generated β-Aminoisobutyric Acid (BAIBA) Reduces Cardiomyocyte Metabolic Stress and Apoptosis Caused by Mitochondrial Dysfunction Through the miR-208b/AMPK Pathway. Front Cardiovasc Med. 2022;9:803510. doi: 10.3389/fcvm.2022.803510
- Wu X, Wang L, Wang K, et al. ADAR2 increases in exercised heart and protects against myocardial infarction and doxorubicin-induced cardiotoxicity. Mol Ther. 2022;30(1):400–414. doi: 10.1016/j.ymthe.2021.07.004
- Gao R, Wang L, Bei Y, et al. Long Noncoding RNA Cardiac Physiological Hypertrophy-Associated Regulator Induces Cardiac Physiological Hypertrophy and Promotes Functional Recovery After Myocardial Ischemia-Reperfusion Injury. Circulation. 2021;144(4):303–317. doi: 10.1161/CIRCULATIONAHA.120.050446
- Peixoto TC, Begot I, Bolzan DW, et al. Early exercise-based rehabilitation improves health-related quality of life and functional capacity after acute myocardial infarction: a randomized controlled trial. Can J Cardiol. 2015;31(3):308–13. doi: 10.1016/j.cjca.2014.11.014
- Bo W, Ma Y, Xi Y, et al. The Roles of FGF21 and ALCAT1 in Aerobic Exercise-Induced Cardioprotection of Postmyocardial Infarction Mice. Oxid Med Cell Longev. 2021;2021:8996482. doi: 10.1155/2021/8996482
- Ma Y, Kuang Y, Bo W, et al. Exercise Training Alleviates Cardiac Fibrosis through Increasing Fibroblast Growth Factor 21 and Regulating TGF-β1-Smad2/3-MMP2/9 Signaling in Mice with Myocardial Infarction. Int J Mol Sci. 2021;22(22):12341. doi: 10.3390/ijms222212341
- Jia D, Hou L, Lv Y, et al. Postinfarction exercise training alleviates cardiac dysfunction and adverse remodeling via mitochondrial biogenesis and SIRT1/PGC-1α/PI3K/Akt signaling. J Cell Physiol. 2019;234(12):23705–23718. doi: 10.1002/jcp.28939
- Qu X, Du Y, Shu Y, et al. MIAT Is a Pro-fibrotic Long Non-coding RNA Governing Cardiac Fibrosis in Post-infarct Myocardium. Sci Rep. 2017;7:42657. doi: 10.1038/srep42657
- Zhang JC, Xia L, Jiang Y, et al. Effect of lncRNA GAS5 on rats with acute myocardial infarction through regulating miR-21. Eur Rev Med Pharmacol Sci. 2019;23(19):8573–8579. doi: 10.26355/eurrev_201910_19173
- Farsangi SJ, Rostamzadeh F, Sheikholeslami M, et al. Modulation of the Expression of Long Non-Coding RNAs H19, GAS5, and MIAT by Endurance Exercise in the Hearts of Rats with Myocardial Infarction. Cardiovasc Toxicol. 2021;21(2):162–168. doi: 10.1007/s12012-020-09607-0
- Song W, Liang Q, Cai M, Tian Z. HIF-1α-induced up-regulation of microRNA-126 contributes to the effectiveness of exercise training on myocardial angiogenesis in myocardial infarction rats. J Cell Mol Med. 2020;24(22):12970–12979. doi: 10.1111/jcmm.15892
- Xi Y, Hao M, Liang Q, et al. Dynamic resistance exercise increases skeletal muscle-derived FSTL1 inducing cardiac angiogenesis via DIP2A-Smad2/3 in rats following myocardial infarction. J Sport Health Sci. 2021;10(5):594–603. doi: 10.1016/j.jshs.2020.11.010
- Cai MX, Shi XC, Chen T, et al. Exercise training activates neuregulin 1/ErbB signaling and promotes cardiac repair in a rat myocardial infarction model. Life Sci. 2016;149:1–9. doi: 10.1016/j.lfs.2016.02.055
- Shi X, Luo X, Xu X. Dimethylarginine dimethylaminohydrolase-1 contributes to exercise-induced cardiac angiogenesis in mice. Biosci Trends. 2020;14(2):115–122. doi: 10.5582/bst.2019.01351
- Xia WH, Li J, Su C, et al. Physical exercise attenuates age-associated reduction in endothelium-reparative capacity of endothelial progenitor cells by increasing CXCR4/JAK-2 signaling in healthy men. Aging Cell. 2012;11(1):111–9. doi: 10.1111/j.1474-9726.2011.00758.x.
- Wang B, Zhou R, Wang Y, et al. Effect of high-intensity interval training on cardiac structure and function in rats with acute myocardial infarct. Biomed Pharmacother. 2020;131:110690. doi: 10.1016/j.biopha.2020.110690
- Souza LM, Okoshi MP, Gomes MJ, et al. Effects of Late Aerobic Exercise on Cardiac Remodeling of Rats with Small-Sized Myocardial Infarction. Arq Bras Cardiol. 2021;116(4):784–792. doi: 10.36660/abc.20190813
- Liao Z, Li D, Chen Y, et al. Early moderate exercise benefits myocardial infarction healing via improvement of inflammation and ventricular remodelling in rats. J Cell Mol Med. 2019;23(12):8328–8342. doi: 10.1111/jcmm.14710
- Guizoni DM, Oliveira-Junior SA, Noor SL, et al. Effects of late exercise on cardiac remodeling and myocardial calcium handling proteins in rats with moderate and large size myocardial infarction. Int J Cardiol. 2016;221:406–12. doi: 10.1016/j.ijcard.2016.07.072
- Marcin T, Trachsel LD, Dysli M, et al. Effect of self-tailored high-intensity interval training versus moderate-intensity continuous exercise on cardiorespiratory fitness after myocardial infarction: A randomised controlled trial. Ann Phys Rehabil Med. 2022;65(1):101490. doi: 10.1016/j.rehab.2021.101490
- Cai M, Wang L, Ren YL. Effect of exercise training on left ventricular remodeling in patients with myocardial infarction and possible mechanisms. World J Clin Cases. 2021;9(22):6308–6318. doi: 10.12998/wjcc.v9.i22.6308
- Trachsel LD, David LP, Gayda M, et al. The impact of high-intensity interval training on ventricular remodeling in patients with a recent acute myocardial infarction-A randomized training intervention pilot study. Clin Cardiol. 2019;42(12):1222–1231. doi: 10.1002/clc.23277
- Jayo-Montoya JA, Jurio-Iriarte B, Aispuru GR, et al. Chronotropic Responses to Exercise and Recovery in Myocardial Infarction Patients Taking β-Blockers Following Aerobic High-Intensity Interval Training: an interfarct study. J Cardiopulm Rehabil Prev. 2022;42(1):22–27. doi: 10.1097/HCR.0000000000000607
- Khadanga S, Savage PD, Pecha A, et al. Optimizing Training Response for Women in Cardiac Rehabilitation: A Randomized Clinical Trial. JAMA Cardiol. 2022;7(2):215–218. doi: 10.1001/jamacardio.2021.4822
- Yakut H, Dursun H, Felekoğlu E, et al. Effect of home-based high-intensity interval training versus moderate-intensity continuous training in patients with myocardial infarction: a randomized controlled trial. Ir J Med Sci. 2022;191(6):2539–2548. doi: 10.1007/s11845-021-02867-x
- Dor-Haim H, Horowitz M, Yaakobi E, et al. Intermittent aerobic-resistance interval training versus continues aerobic training: Improvement in cardiac electrophysiologic and anthropometric measures in male patients post myocadiac infarction, a randomized control trial. PLoS One. 2022;17(5):e0267888. doi: 10.1371/journal.pone.0267888
- Eser P, Jaeger E, Marcin T, et al. Acute and chronic effects of high-intensity interval and moderate-intensity continuous exercise on heart rate and its variability after recent myocardial infarction: A randomized controlled trial. Ann Phys Rehabil Med. 2022;65(1):101444. doi: 10.1016/j.rehab.2020.09.008
- Kollet DP, Marenco AB, Bellé NL, et al. Aerobic exercise, but not isometric handgrip exercise, improves endothelial function and arterial stiffness in patients with myocardial infarction undergoing coronary intervention: a randomized pilot study. BMC Cardiovasc Disord. 2021;21(1):101. doi: 10.1186/s12872-021-01849-2
- Jiang M, Hua M, Zhang X, et al. Effect analysis of kinetic energy progressive exercise in patients with acute myocardial infarction after percutaneous coronary intervention: a randomized trial. Ann Palliat Med. 2021;10(7):7823–7831. doi: 10.21037/apm-21-1478
- Grabara M, Nowak Z, Nowak A. Effects of Hatha Yoga on Cardiac Hemodynamic Parameters and Physical Capacity in Cardiac Rehabilitation Patients. J Cardiopulm Rehabil Prev. 2020;40(4):263–267. doi: 10.1097/HCR.0000000000000503
- McGregor G, Gaze D, Oxborough D, et al. Reverse left ventricular remodeling: effect of cardiac rehabilitation exercise training in myocardial infarction patients with preserved ejection fraction. Eur J Phys Rehabil Med. 2016;52(3):370–8.
- Giallauria F, Cirillo P, D’agostino M, et al. Effects of exercise training on high-mobility group box-1 levels after acute myocardial infarction. J Card Fail. 2011;17(2):108–14. doi: 10.1016/j.cardfail.2010.09.001
- Kubo N, Ohmura N, Nakada I, et al. Exercise at ventilatory threshold aggravates left ventricular remodeling in patients with extensive anterior acute myocardial infarction. Am Heart J. 2004;147(1):113–20. doi: 10.1016/s0002-8703(03)00521-0
- Chambers J. Aortic stenosis. BMJ. 2005;330(7495):801–2. doi: 10.1136/bmj.330.7495.801
- Yap SC, Takkenberg JJ, Witsenburg M, et al. Aortic stenosis at young adult age. Expert Rev Cardiovasc Ther. 2005;3(6):1087–98. doi: 10.1586/14779072.3.6.1087
- Zeppilli P, Bianco M, Bria S, Palmieri V. Bicuspid aortic valve: an innocent finding or a potentially life-threatening anomaly whose complications may be elicited by sports activity? J Cardiovasc Med (Hagerstown). 2006;7(4):282–7. doi: 10.2459/01.JCM.0000219322.04881.9e
- Scharhag J, Meyer T, Kindermann I, et al. Bicuspid aortic valve: evaluation of the ability to participate in competitive sports: case reports of two soccer players. Clin Res Cardiol. 2006;95(4):228–34. doi: 10.1007/s00392-006-0359-x
- Schultz RL, Swallow JG, Waters RP, et al. Effects of excessive long-term exercise on cardiac function and myocyte remodeling in hypertensive heart failure rats. Hypertension. 2007;50(2):410–6. doi: 10.1161/HYPERTENSIONAHA.106.086371
- Kandilova VN. Heart and vessel remodeling in different age groups of patients with arterial hypertension. Eurasian heart journal. 2019;(4):86–96. doi: 10.38109/2225-1685-2019-4-86-96
- Humeres C, Frangogiannis NG. Fibroblasts in the Infarcted, Remodeling, and Failing Heart. JACC Basic Transl Sci. 2019;4(3):449–467. doi: 10.1016/j.jacbts.2019.02.006
- Lim SL, Lam CS, Segers VF, et al. Cardiac endothelium-myocyte interaction: clinical opportunities for new heart failure therapies regardless of ejection fraction. Eur Heart J. 2015;36(31):2050–2060. doi: 10.1093/eurheartj/ehv132
- Huang H, Huang W. Regulation of Endothelial Progenitor Cell Functions in Ischemic Heart Disease: New Therapeutic Targets for Cardiac Remodeling and Repair. Front Cardiovasc Med. 2022;9:896782. doi: 10.3389/fcvm.2022.896782
- Su SA, Xie Y, Fu Z, et al. Emerging role of exosome-mediated intercellular communication in vascular remodeling. Oncotarget. 2017;8(15):25700–25712. doi: 10.18632/oncotarget.14878
- Kopp F, Mendell JT. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell. 2018;172(3):393–407. doi: 10.1016/j.cell.2018.01.011
- Ponnusamy M, Liu F, Zhang YH, et al. Long Noncoding RNA CPR (Cardiomyocyte Proliferation Regulator) Regulates Cardiomyocyte Proliferation and Cardiac Repair. Circulation. 2019;139(23):2668–2684. doi: 10.1161/CIRCULATIONAHA.118.035832
- Mathiyalagan P, Adamiak M, Mayourian J, et al. FTO-Dependent N6-Methyladenosine Regulates Cardiac Function During Remodeling and Repair. Circulation. 2019;139(4):518–532. doi: 10.1161/CIRCULATIONAHA.118.033794
- Zhang T, Zhang Y, Cui M, et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 2016;22(2):175–82. doi: 10.1038/nm.4017
- Ghardashi Afousi A, Gaeini A, Rakhshan K, et al. Targeting necroptotic cell death pathway by high-intensity interval training (HIIT) decreases development of post-ischemic adverse remodelling after myocardial ischemia / reperfusion injury. J Cell Commun Signal. 2019;13(2):255–267. doi: 10.1007/s12079-018-0481-3
- Radugin FM, Timkina NV, Karonova TL. Metabolic properties of irisin in health and in diabetes mellitus. Obesity and metabolism. 2022;19(3):332–339. doi: 10.14341/omet12899
- Hassaan PS, Nassar SZ, Issa Y, Zahran N. Irisin vs. Treadmill Exercise in Post Myocardial Infarction Cardiac Rehabilitation in Rats. Arch Med Res. 2019;50(2):44–54. doi: 10.1016/j.arcmed.2019.05.009
- Lee SE, Nguyen C, Yoon J, et al. Three-dimensional Cardiomyocytes Structure Revealed By Diffusion Tensor Imaging and Its Validation Using a Tissue-Clearing Technique. Sci Rep. 2018;8(1):6640. doi: 10.1038/s41598-018-24622-6
- Eder RA, van den Boomen M, Yurista SR, et al. Exercise-induced CITED4 expression is necessary for regional remodeling of cardiac microstructural tissue helicity. Commun Biol. 2022;5(1):656. doi: 10.1038/s42003-022-03635-y. Erratum in: Commun Biol. 2022;5(1):696. doi: 10.1038/s42003-022-03671-8.
- Varga I, Kyselovič J, Galfiova P, Danisovic L. The Non-cardiomyocyte Cells of the Heart. Their Possible Roles in Exercise-Induced Cardiac Regeneration and Remodeling. Adv Exp Med Biol. 2017;999:117–136. doi: 10.1007/978-981-10-4307-9_8
- Davis J, Burr AR, Davis GF, et al. A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Dev Cell. 2012;23(4):705–15. doi: 10.1016/j.devcel.2012.08.017
- Fernandes T, Baraúna VG, Negrão CE, et al. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. Am J Physiol Heart Circ Physiol. 2015;309(4):H543–52. doi: 10.1152/ajpheart.00899.2014
- Opstad TB, Seljeflot I, Bøhmer E, et al. MMP-9 and Its Regulators TIMP-1 and EMMPRIN in Patients with Acute ST-Elevation Myocardial Infarction: A NORDISTEMI Substudy. Cardiology. 2018;139(1):17–24. doi: 10.1159/000481684
- Brianezi L, Ornelas E, Gehrke FS, et al. Effects of Physical Training on the Myocardium of Oxariectomized LDLr Knockout Mice: MMP 2/9, Collagen I/III, Inflammation and Oxidative Stress. Arq Bras Cardiol. 2020;114(1):100–105. doi: 10.5935/abc.20190223
- Lighthouse JK, Burke RM, Velasquez LS, et al. Exercise promotes a cardioprotective gene program in resident cardiac fibroblasts. JCI Insight. 2019;4(1):e92098. doi: 10.1172/jci.insight.92098
- Cai Y, Xie KL, Zheng F, Liu SX. Aerobic Exercise Prevents Insulin Resistance Through the Regulation of miR-492/Resistin Axis in Aortic Endothelium. J Cardiovasc Transl Res. 2018;11(6):450–458. doi: 10.1007/s12265-018-9828-7
- Donghui T, Shuang B, Xulong L, et al. Improvement of microvascular endothelial dysfunction induced by exercise and diet is associated with microRNA-126 in obese adolescents. Microvasc Res. 2019;123:86–91. doi: 10.1016/j.mvr.2018.10.009
- Ouchi N, Oshima Y, Ohashi K, et al. Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem. 2008;283(47):32802–11. doi: 10.1074/jbc.M803440200
- Xi Y, Hao M, Liang Q, et al. Dynamic resistance exercise increases skeletal muscle-derived FSTL1 inducing cardiac angiogenesis via DIP2A-Smad2/3 in rats following myocardial infarction. J Sport Health Sci. 2021;10(5):594–603. doi: 10.1016/j.jshs.2020.11.010
- Pourheydar B, Biabanghard A, Azari R, et al. Exercise improves aging-related decreased angiogenesis through modulating VEGF-A, TSP-1 and p-NF-b protein levels in myocardiocytes. J Cardiovasc Thorac Res. 2020;12(2):129–135. doi: 10.34172/jcvtr.2020.21
- Chen J, Gu S, Song Y, et al. The impact of cardiomotor rehabilitation on endothelial function in elderly patients with chronic heart failure. BMC Cardiovasc Disord. 2021;21(1):524. doi: 10.1186/s12872-021-02327-5
- Li WD, Zhou DM, Sun LL, et al. LncRNA WTAPP1 Promotes Migration and Angiogenesis of Endothelial Progenitor Cells via MMP1 Through MicroRNA 3120 and Akt/PI3K/Autophagy Pathways. Stem Cells. 2018;36(12):1863–1874. doi: 10.1002/stem.2904
- Soori R, Amini AA, Choobineh S, et al. Exercise attenuates myocardial fibrosis and increases angiogenesis-related molecules in the myocardium of aged rats. Arch Physiol Biochem. 2022;128(1):1–6. doi: 10.1080/13813455.2019.1660370
- Jin K, Gao S, Yang P, et al. Single-Cell RNA Sequencing Reveals the Temporal Diversity and Dynamics of Cardiac Immunity after Myocardial Infarction. Small Methods. 2022;6(3):e2100752. doi: 10.1002/smtd.202100752
- Zhang QL, Wang W, Jiang Y, et al. GRGM-13 comprising 13 plant and animal products, inhibited oxidative stress induced apoptosis in retinal ganglion cells by inhibiting P2RX7/p38 MAPK signaling pathway. Biomed Pharmacother. 2018;101:494–500. doi: 10.1016/j.biopha.2018.02.107
- Grebe A, Hoss F, Latz E. NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis. Circ Res. 2018;122(12):1722–1740. doi: 10.1161/CIRCRESAHA
- Afonina IS, Zhong Z, Karin M, Beyaert R. Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol. 2017;18(8):861–869. doi: 10.1038/ni.3772
- Stachon P, Heidenreich A, Merz J, et al. P2X7 Deficiency Blocks Lesional Inflammasome Activity and Ameliorates Atherosclerosis in Mice. Circulation. 2017;135(25):2524–2533. doi: 10.1161/CIRCULATIONAHA.117.027400
- Chen X, Li H, Wang K, et al. Aerobic Exercise Ameliorates Myocardial Inflammation, Fibrosis and Apoptosis in High-Fat-Diet Rats by Inhibiting P2X7 Purinergic Receptors. Front Physiol. 2019;10:1286. doi: 10.3389/fphys.2019.01286
- Peake JM, Neubauer O, Walsh NP, Simpson RJ. Recovery of the immune system after exercise. J Appl Physiol (1985). 2017;122(5):1077–1087. doi: 10.1152/japplphysiol.00622.2016
- Femminò S, Penna C, Margarita S, et al. Extracellular vesicles and cardiovascular system: Biomarkers and Cardioprotective Effectors. Vascul Pharmacol. 2020;135:106790. doi: 10.1016/j.vph.2020.106790
- Bei Y, Xu T, Lv D, et al. Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury. Basic Res Cardiol. 2017;112(4):38. doi: 10.1007/s00395-017-0628-z
- Yin A, Yuan R, Xiao Q, et al. Exercise-derived peptide protects against pathological cardiac remodeling. EBioMedicine. 2022;82:104164. doi: 10.1016/j.ebiom.2022.104164
Дополнительные файлы
