Acne: role of Cutibacterium acnes and possibilities of using bacteriophages

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The role of Cutibacterium acnes in the pathogenesis of acne vulgaris and its adverse effect on follicular hyperkeratosis, inflammation and the skin microbiome have now been established. Their excessive colonization contributes to the loss of microbial diversity of the skin, activates the innate immune system, leads to the appearance of skin rash elements and chronic inflammation. Bacteriophages are considered as a new promising direction in the treatment of patients with acne, as they have an antimicrobial effect against C. acnes; contribute to the preservation of the skin microbiome; have an indirect effect on the innate and adaptive immune response.

AIM: To evaluate the effectiveness and safety of topical therapy with cosmetic gel with bacteriophages Fagoderm in the complex treatment of patients with moderate to severe acne.

MATERIALS AND METHODS: In the design of a simple open prospective study in parallel groups, the effect of cosmetic gel with bacteriophages on the number of comedones, pupules and pustules was assessed in 35 adult patients with moderate acne. During therapy, possible adverse events were simultaneously recorded.

RESULTS: During therapy, similar dynamics were noted in the form of a decrease in non-inflammatory elements of acne both in the group of people receiving a combination of adapalene and phagoderm, and in the comparison group, where monotherapy with adapalene was carried out. The number of inflammatory elements of acne decreased in both groups, but in the main group this happened at an earlier time. Compared to the initial data, already in the 2nd week the number of inflammatory elements decreased by 50% (in comparison ― by 32%); by the end of the 4th ― by 95% (respectively in the comparison group ― by 74%).

CONCLUSION: Cosmetic gel with bacteriophages with bacteriophages helps reduce the inflammatory manifestations of moderate acne.

About the authors

Andrey L. Bakulev

Central State Medical Academy of Department of Presidential Affairs

Author for correspondence.
Email: al_ba05@mail.ru
ORCID iD: 0000-0002-1450-4942
SPIN-code: 6708-7386

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Irina A. Igonina

SB Clinic Cosmetology

Email: igochka@bk.ru
ORCID iD: 0000-0003-0510-9534
SPIN-code: 9206-6186
Russian Federation, Saratov

Yulia M. Bocharova

SB Clinic Cosmetology

Email: juliavern@mail.ru
ORCID iD: 0009-0005-5521-5943
SPIN-code: 7922-4120
Russian Federation, Saratov

Sergey S. Kravchenya

Clinic of Pediatrics and Pediatric Dentistry of Dr. Truhmanov

Email: krawww@mail.ru
ORCID iD: 0000-0002-0400-7846
SPIN-code: 3289-0591

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, Engels

References

  1. Zouboulis CC, Bettoli V. Management of severe acne. Br J Dermatol. 2015;172(S1):27–36. doi: 10.1111/bjd.13639
  2. Dréno B. What is new in the pathophysiology of acne, an overview. J Eur Acad Dermatol Venereol. 2017;31:8–12. doi: 10.1111/jdv.14374
  3. Antiga E, Verdelli A, Bonciani D, et al. Acne: A new model of immune-mediated chronic inflammatory skin disease. G Ital Dermatol Venereol. 2015;150(2):247–254.
  4. Gollnick HP, Bettoli V, Lambert J, et al. A consensus-based practical and daily guide for the treatment of acne patients. J Eur Acad Dermatol Venereol. 2016;30(9):1480–1490. doi: 10.1111/jdv.13675
  5. Bhat YJ, Latief I, Hassan I. Update on etiopathogenesis and treatment of acne. Indian J Dermatol Venereol Leprology. 2017;83(3):298. doi: 10.4103/0378-6323.199581
  6. O’Neill AM, Gallo RL. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. Microbiome. 2018;6:177. doi: 10.1186/s40168-018-0558-5
  7. Wang D, Duncan B, Li X, Shi J. The role of NLRP3 inflammasome in infection-related, immune-mediated and autoimmune skin diseases. J Dermatological Sci. 2020;98(3):146–151.
  8. Platsidaki E, Dessinioti C. Recent advances in understanding Propionibacterium acnes (Cutibacterium acnes) in acne. F1000Res. 2018;7:F1000 Faculty Rev-1953. doi: 10.12688/f1000research.15659.1
  9. Dréno B, Pécastaings S, Corvec S, et al. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: A brief look at the latest updates. J Eur Acad Dermatol Venereol. 2018;32:5–14. doi: 10.1111/jdv.15043
  10. Del Rosso JQ, Kircik LH. The sequence of inflammation, relevant biomarkers, and the pathogenesis of acne vulgaris: What does recent research show and what does it mean to the clinician? J Drugs Dermatol. 2013;12(8, Suppl):s109–115.
  11. Dreno B, Dekio I, Baldwin H, et al. Acne microbiome: From phyla to phylotypes. J Eur Acad Dermatol Venereol. 2024;38(4):657–664. doi: 10.1111/jdv.19540
  12. Dagnelie MA, Corvec S, Saint-Jean M, et al. Cutibacterium acnes phylotypes diversity loss: A trigger for skin inflammatory process. J Eur Acad Dermatol Venereol. 2019;33(12):2340–2348. doi: 10.1111/jdv.15795
  13. Dagnelie MA, Khammari A, Dréno B, Corvec S. Cutibacterium acnes molecular typing: time to standardize the method. Clin Microbiol Infection. 2018;24(11):1149–1155. doi: 10.1016/j.cmi.2018.03.010
  14. Beylot C, Auffret N, Poli F, et al. Propionibacterium acnes: An update on its role in the pathogenesis of acne. J Eur Acad Dermatol Venereol. 2014;28(3):271–278. doi: 10.1111/jdv.12224
  15. Cong TX, Hao D, Wen X, et al. From pathogenesis of acne vulgaris to anti-acne agents. Arch Dermatological Res. 2019;311(5):337–349. doi: 10.1007/s00403-019-01908-x
  16. Farrah G, Tan E. The use of oral antibiotics in treating acne vulgaris: A new approach. Dermatologic Ther. 2016;29(5):377–384.
  17. Oudenhoven MD, Kinney MA, McShane DB, et al. Adverse effects of acne medications: Recognition and management. Am J Clin Dermatol. 2015;16(4):231–242. doi: 10.1007/s40257-015-0127-7
  18. Liu PF, Hsieh YD, Lin YC, et al. Propionibacterium acnes in the pathogenesis and immunotherapy of acne vulgaris. Curr Drug Metabolism. 2015;16(4):245–254. doi: 10.2174/1389200216666150812124801
  19. Karadag AS, Aslan Kayiran M, Wu CY, et al. Antibiotic resistance in acne: Changes, consequences and concerns. J Eur Acad Dermatol Venereol. 2020;35(1):73–78. doi: 10.1111/jdv.16686
  20. Woo TE, Sibley CD. The emerging utility of the cutaneous microbiome in the treatment of acne and atopic dermatitis. J Am Acad Dermatol. 2020;82(1):222–228. doi: 10.1016/j.jaad.2019.08.078
  21. Roach DR, Leung CY, Henry M, et al. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe. 2017;22(1):38–47.e4. doi: 10.1016/j.chom.2017.06.018
  22. Ilyina TS, Tolordava ER, Romanova YM. A look at phage therapy one hundred years after the bacteriophages discovery. Molecular Genetics, Microbiology and Virology. 2019;37(3):103–112. EDN: FWJUFO doi: 10.17116/molgen201937031103
  23. Parasion S, Kwiatek M, Gryko R, et al. Bacteriophages as an alternative strategy for fighting biofilm development. Polish J Microbiol. 2014;63(2):137–145.
  24. Hanlon GW. Bacteriophages: An appraisal of their role in the treatment of bacterial infections. Int J Antimicrob Agents. 2007;30(2):118–128. doi: 10.1016/j.ijantimicag.2007.04.006
  25. Jariah RO, Hakim MS. Interaction of phages, bacteria, and the human immune system: Evolutionary changes in phage therapy. Rev Med Virol. 2019;29(5):e2055. doi: 10.1002/rmv.2055
  26. Leung CY, Weitz JS. Modeling the synergistic elimination of bacteria by phage and the innate immune system. J Theor Biol. 2017;429:241–252. doi: 10.1016/j.jtbi.2017.06.037
  27. Lenneman BR, Fernbach J, Loessner MJ, et al. Enhancing phage therapy through synthetic biology and genome engineering. Curr Opin Biotechnol. 2021;68:151–159. doi: 10.1016/j.copbio.2020.11.003
  28. Oechslin F. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses. 2018;10(7):351. doi: 10.3390/v10070351
  29. Kebriaei R, Lev KL, Shah RM, et al. Eradication of biofilm-mediated methicillin-resistant Staphylococcus aureus infections in vitro: Bacteriophage antibiotic combination. Microbiol Spectr. 2022;10(2):e0041122. doi: 10.1128/spectrum.00411-22
  30. Brown TL, Petrovski S, Dyson ZA, et al. The formulation of bacteriophage in a semi solid preparation for control of propionibacterium acnes growth. PLoS One. 2016;11(3):e0151184. doi: 10.1371/journal.pone.0151184
  31. Kim MJ, Eun DH, Kim SM, et al. Efficacy of bacteriophages in propionibacterium acnes-induced inflammation in mice. Ann Dermatol. 2019;31(1):22–28. doi: 10.5021/ad.2019.31.1.22
  32. Zurabov AYu, Zhilenkov EL, Popov DV, et al. Phagoderm phage preparation and its application perspectives in dermatology and cosmetology. Vestnik esteticheskoi meditsiny. 2012;11(3):56–63. EDN: PFQKCB
  33. Zhukova OV, Kasikhina EI, Ostretsova MN, Nemer A. Bacteriophages in the treatment and prevention of atopic dermatitis and dermatoses complicated by secondary bacterial infection. Medical Council. 2022;(13):66–72. EDN: LIHXKN doi: 10.21518/2079-701X-2022-16-13-66-72
  34. Clinical recommendations. Acne. Moscow; 2016. Available from: https://library.mededtech.ru/rest/documents/cr_721/. Accessed: 15.04.2024.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Immunopathogenesis of acne (adapted from [Farfán J, Gonzalez JM, Vives M. The immunomodulatory potential of phage therapy to treat acne: a review on bacterial lysis and immunomodulation. Peer J. 2022;10:e13553. doi: 10.7717/peerj.13553]): 1 ― triggers are recognized by sebocyte and keratinocyte receptors; 2 ― seborrhea; 3 ― production of inflammatory cytokines and metalloproteinases; 4 ― activation of dendritic cells; 5 ― production of palmetic acid; 6 ― follicular hyperkeratosis and proliferation of C. acnes; 7 ― inflammation; 8 ― Th1-immune response; 9 ― activation of phagocytosis; 10 ― decreased control role of Tregs over keratinocyte proliferation; 11 ― leukocyte infiltration. NF-κB ― nuclear factor kappa B; ROS ― reactive oxygen species; PI3 ― phosphoinositide 3-kinase; AKT ― protein kinase B; MAPK ― mitogen-activated protein kinase; mTORC1 ― mammalian target of rapamycin complex; SREBP-1 ― sterol regulatory element binding protein 1; Th ― T helper cells; Treg ― T regulatory cells; iTh ― inflammatory T helper cells; TNFα ― tumor necrosis factor α; DC ― dendritic cells.

Download (1MB)
3. Fig. 2. Dynamics of the number of non-inflammatory and inflammatory elements of acne in the course of therapy, abs.

Download (343KB)
4. Fig. 3. Patient A., diagnosis: “Common acne, medium severity”: а ― before treatment; b ― after treatment.

Download (523KB)
5. Fig. 4. Patient K., diagnosis: “Common acne, medium severity”: а ― before treatment; b ― after treatment.

Download (569KB)

Copyright (c) 2024 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».