Mathematical methods in machine learning for predicting response to treatment in patients with severe bullous dermatoses
- Authors: Olisova O.Y.1, Lepekhova A.A.1, Dukhanin A.S.2, Teplyuk N.P.1, Shimanovsky N.L.2, Sidortsov A.V.3, Mardanova A.A.1
-
Affiliations:
- The First Sechenov Moscow State Medical University
- The Russian National Research Medical University named after N.I. Pirogov
- Public JSC Sberbank
- Issue: Vol 28, No 5 (2025)
- Pages: 594-614
- Section: DERMATOLOGY
- URL: https://journal-vniispk.ru/1560-9588/article/view/359056
- DOI: https://doi.org/10.17816/dv684538
- EDN: https://elibrary.ru/UZFOYL
- ID: 359056
Cite item
Abstract
BACKGROUND: Machine learning is widely used in medicine, specifically dermatology, to predict response to treatment and disease severity and activity. Until recently, these assessments in patients with bullous dermatoses were primarily performed by direct immunofluorescence image analysis, and machine learning was not used to integrate the findings of genetic and immunological tests.
AIM: This study aimed to create a model for predicting resistance to systemic glucocorticoids in patients with bullous dermatoses and classify the patients as steroid-resistant or steroid-sensitive based on genomic (HLA-DRB1, HLA-DQB1, glucocorticoid receptor [GR] A3669G β isoform, expression of α/β isoforms) and non-genomic (cytokines, chemokines, granulysin) data using machine learning.
METHODS: The study included 150 patients with bullous dermatoses and 92 donors for genetic testing, as well as 67 patients and 43 donors for cytokine/chemokine and granulysin tests. The following methods were used: logistic regression, support vector machine, decision tree, random forest, gradient boosting, and ROC analysis.
RESULTS: Logistic regression showed the highest accuracy (Recall 1, Precision 0.938, ROC-AUC 0.992). GRα isoform expression above 36.7 U was associated with the risk of bullous dermatosis of >50% (odds ratio: 1.116). The support vector machine identified significant HLA alleles and the A3669G polymorphism. The random forest and CatBoost confirmed the prognostic value of IL-15, IL-4, CXCL8, and granulysin in predicting resistance (ROC-AUC up to 0.879).
CONCLUSION: The formula based on GRα isoform expression accurately stratifies patients based on their risk of bullous dermatosis. Machine learning methods classify patients by resistance to systemic glucocorticoids based on the major histocompatibility complex (HLA) and immunological markers. Blister fluid analysis is a promising tool for early prediction of response to treatment and personalized therapy.
Full Text
##article.viewOnOriginalSite##About the authors
Olga Y. Olisova
The First Sechenov Moscow State Medical University
Email: olisovaolga@mail.ru
ORCID iD: 0000-0003-2482-1754
SPIN-code: 2500-7989
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowAnfisa A. Lepekhova
The First Sechenov Moscow State Medical University
Author for correspondence.
Email: anfisa.lepehova@yandex.ru
ORCID iD: 0000-0002-4365-3090
SPIN-code: 3261-3520
MD, Cand. Sci. (Medicine), Assistant Professor
Russian Federation, MoscowAlexander S. Dukhanin
The Russian National Research Medical University named after N.I. Pirogov
Email: das03@rambler.ru
ORCID iD: 0000-0003-2433-7727
SPIN-code: 5028-6000
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowNatalia P. Teplyuk
The First Sechenov Moscow State Medical University
Email: teplyukn@gmail.com
ORCID iD: 0000-0002-5800-4800
SPIN-code: 8013-3256
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowNikolay L. Shimanovsky
The Russian National Research Medical University named after N.I. Pirogov
Email: shiman@rsmu.ru
ORCID iD: 0000-0001-8887-4420
SPIN-code: 5232-8230
MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences
Russian Federation, MoscowAndrey V. Sidortsov
Public JSC Sberbank
Email: sidortsov247@gmail.com
ORCID iD: 0009-0004-1100-7862
Data Scientist
Russian Federation, MoscowAlina A. Mardanova
The First Sechenov Moscow State Medical University
Email: alinamardanova5@gmail.com
ORCID iD: 0009-0000-8883-6694
Russian Federation, Moscow
References
- Chan S, Reddy V, Myers B, et al. Machine learning in dermatology: current applications, opportunities, and limitations. Dermatol Ther (Heidelb). 2020;10(3):365–386. doi: 10.1007/s13555-020-00372-0
- Murphy KP. Machine learning: a probabilistic perspective. Cambridge: MIT Press; 2012. 1071 p. (Adaptive computation and machine learning). ISBN 9780262018029
- Silver D, Huang A, Maddison CJ, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529(7587):484–489. doi: 10.1038/nature16961
- Jeong HK, Park C, Henao R, Kheterpal M. Deep learning in dermatology: a systematic review of current approaches, outcomes, and limitations. JID Innov. 2022;3(1):100150. doi: 10.1016/j.xjidi.2022.100150
- Coomans D, Massart DL. Alternative k-nearest neighbour rules in supervised pattern recognition: part 1 k-Nearest neighbour classification by using alternative voting rules. Anal Chim Acta. 1982;136:15–27. doi: 10.1016/S0003-2670(01)95359-0
- Hearst MA, Dumais ST, Osuna E, et al. Support vector machines. IEEE Intell Syst Appl. 1998;13(4):18–28. doi: 10.1109/5254.708428
- Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. doi: 10.1023/A:1010933404324
- Manning CD, Schütze H. Foundations of statistical natural language processing. Cambridge: MIT Press; 1999. 680 p. ISBN 0-262-13360-1
- Schmidt E, Kasperkiewicz M, Joly P. Pemphigus. Lancet. 2019;394(10201):882–894. doi: 10.1016/S0140-6736(19)31778-7
- Schmidt E, Zillikens D. Pemphigoid diseases. Lancet. 2013;381(9863):320–332. doi: 10.1016/S0140-6736(12)61140-4
- Shah H, Parisi R, Mukherjee E, et al. Update on Stevens-Johnson syndrome and toxic epidermal necrolysis: diagnosis and management. Am J Clin Dermatol. 2024;25(6):891–908. doi: 10.1007/s40257-024-00889-6 EDN: WYXLLY
- Joly P, Horvath B, Patsatsi Α, et al. Updated S2K guidelines on the management of pemphigus vulgaris and foliaceus initiated by the European Academy of Dermatology and Venereology (EADV). J Eur Acad Dermatol Venereol. 2020;34(9):1900–1913. doi: 10.1111/jdv.16752 EDN: HHTDRU
- Lepekhova A, Olisova O, Shimanovsky N, et al. A3669G polymorphism of glucocorticoid receptor is more present in patients with pemphigus vulgaris than in healthy controls and contributes to steroid-resistance. Dermatol Ther. 2024;2024(1):10.1155/2024/5573157. doi: 10.1155/2024/5573157 EDN: BUOOMK
- Chriguer RS, Roselino AM, de Castro M. Glucocorticoid sensitivity and proinflammatory cytokines pattern in pemphigus. J Clin Immunol. 2012;32(4):786–793. doi: 10.1007/s10875-012-9679-y EDN: BYTDVZ
- Clinical recommendations. Bubble wrap. Russian Society of Dermatovenerologists and Cosmetologists; 2020. (In Russ.) Available from: https://cnikvi.ru/klinicheskie-rekomendacii-rossijskogo-obshchestva/klinicheskie-rekomendacii/#klinicheskie-rekomendacii-minzdrava-RF/dermatologiya Accessed: 15.08.2025. (In Russ.)
- Clinical recommendations. Bullous pemphigoid. Russian Society of Dermatovenerologists and Cosmetologists; 2020. (In Russ.) Available from: https://cnikvi.ru/klinicheskie-rekomendacii-rossijskogo-obshchestva/klinicheskie-rekomendacii/#klinicheskie-rekomendacii-minzdrava-RF/dermatologiya Accessed: 15.08.2025.
- Clinical recommendations. Stevens-Johnson syndrome. Russian Society of Dermatovenerologists and Cosmetologists; 2020. (In Russ.) Available from: https://cnikvi.ru/klinicheskie-rekomendacii-rossijskogo-obshchestva/klinicheskie-rekomendacii/#klinicheskie-rekomendacii-minzdrava-RF/dermatologiya Accessed: 15.08.2025.
- Murrell DF, Dick S, Ahmed AR, et al. Consensus statement on definitions of disease, end points, and therapeutic response for pemphigus. J Am Acad Dermatol. 2008;58(6):1043–1046. doi: 10.1016/j.jaad.2008.01.012
- Puri P, Comfere N, Drage LA, et al. Deep learning for dermatologists: part II. Current applications. J Am Acad Dermatol. 2022;87(6):1352–1360. doi: 10.1016/j.jaad.2020.05.053 EDN: ILKKYW
- Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–118. doi: 10.1038/nature21056
- Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data. 2018;5(1):180161. doi: 10.1038/sdata.2018.161
- Bagel J, Wang Y, Montgomery P. A Machine Learning-Based Test for Predicting Response to Psoriasis Biologics. J of Skin. 2021;5(6):621-638. doi: 10.25251/skin.5.6.5.
- Omiye JA, Gui H, Daneshjou R, et al. Principles, applications, and future of artificial intelligence in dermatology. Front Med (Lausanne). 2023;10:1278232. doi: 10.3389/fmed.2023.1278232 EDN: METAYN
- Patrick MT, Stuart PE, Raja K, et al. Genetic signature to provide robust risk assessment of psoriatic arthritis development in psoriasis patients. Nat Commun. 2018;9(1):4178. doi: 10.1038/s41467-018-06672-6
- Shi C, Azzopardi G, Petkov N, et al. Detection of u-serrated patterns in direct immunofluorescence images of autoimmune bullous diseases by inhibition-augmented COSFIRE filters. Int J Med Inform. 2019;122:27–36. doi: 10.1016/j.ijmedinf.2018.11.007 EDN: WNUEPX
- Van Beek N, Dähnrich C, Johannsen N, et al. Prospective studies on the routine use of a novel multivariant enzyme-linked immunosorbent assay for the diagnosis of autoimmune bullous diseases. J Am Acad Dermatol. 2017;76(5):889–894e5. doi: 10.1016/j.jaad.2016.11.002
Supplementary files











