Comparative analysis of methods for inducing steatosis using a complex of fatty acid bovine serum albumin in an in vitro model on HepG2 cells
- 作者: Knyazeva Е.S.1, Vinokhodov D.O.1
-
隶属关系:
- St. Petersburg State Technological Institute (Technical University)
- 期: 卷 28, 编号 4 (2025)
- 页面: 66-72
- 栏目: Biological chemistry
- URL: https://journal-vniispk.ru/1560-9596/article/view/290930
- DOI: https://doi.org/10.29296/25877313-2025-04-08
- ID: 290930
如何引用文章
详细
Introduction. Non-alcoholic fatty liver disease (NAFLD) is a major public health issue characterized by a rapidly increasing prevalence worldwide. NAFLD is associated with excessive lipid accumulation and the development of inflammation in the liver. To study the pathogenic mechanisms of the disease, a steatosis model using immortalized cell lines is widely employed.
The aim of this study was to improve the in vitro steatosis model using HepG2 cells by conducting a comparative analysis of two methods of steatosis induction, utilizing a fatty acid (FA) complex with bovine serum albumin (BSA) prepared by simple dissolution or conjugation.
Material and methods. Cell viability was assessed using the XTT assay. Lipid accumulation in HepG2 cells was measured by the GPO-PAP method, with triglyceride (TG) levels normalized to cellular protein content. Production of the pro-inflammatory cytokine IL-8, a marker of inflammation, was quantitatively determined using an enzyme-linked immunosorbent assay (ELISA). Statistical significance was evaluated using Student's t-test, with p-values < 0.05 considered statistically significant.
Results. The optimal FA concentration that promoted lipid accumulation and inflammation without a marked cytotoxic effect in HepG2 cells was 0.75 mM. The conjugated FA-BSA complex led to a higher TG accumulation compared to the FA-BSA complex prepared by dissolution. However, IL-8 levels were significantly lower in the culture medium of HepG2 cells treated with the conjugated complex compared to those treated with the FA-BSA complex prepared by dissolution.
Conclusions. The use of the conjugated FA-BSA complex allowed for the development of an improved in vitro steatosis model that more closely resembles the physiological mechanisms of NAFLD progression.
作者简介
Е. Knyazeva
St. Petersburg State Technological Institute (Technical University)
编辑信件的主要联系方式.
Email: e.s.knyazeva@inbox.ru
ORCID iD: 0000-0002-4268-8881
SPIN 代码: 1243-9665
Lecturer at the Department of Molecular Biotechnology
俄罗斯联邦, Moskovski ave., 24-26/49 lit. A, St. Petersburg, 190013D. Vinokhodov
St. Petersburg State Technological Institute (Technical University)
Email: vinokhodov@list.ru
ORCID iD: 0000-0001-7508-5457
SPIN 代码: 7858-5950
Dr.Sc. (Biol.), Associate Professor, Head of the Department of Molecular Biotechnology
俄罗斯联邦, Moskovski ave., 24-26/49 lit. A, St. Petersburg, 190013参考
- Riazi K., Azhari H., Charette J.H. et al. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022; 7(9): 851–861. doi: 10.1016/S2468-1253(22)00165-0.
- Younossi Z.M., Golabi P., Paik J.M. et al. The global epi-demiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology. 2023; 77(4): 1335–1347. doi: 10.1097/HEP.0000000000000004.
- Teng M.L., Nguen A.K., Shah F.A. et al. Global incidence and prevalence of nonalcoholic fatty liver disease. Clin Mol Hepatol. 2023; 29(Suppl): S32–S42. doi: 10.3350/cmh.2022.0365.
- Soret P.A., Magusto J., Housset C. et al. In vitro and in vivo models of non-alcoholic fatty liver disease: A critical appraisal. J Clin Med. 2020; 10(1): 36. doi: 10.3390/jcm10010036.
- Ramos M.J., Bandiera L., Menolascina F. et al. In vitro models for non-alcoholic fatty liver disease: Emerging platforms and their applications. iScience. 2022; 25(1): 103549. doi: 10.1016/j.isci.2021.103549.
- Arzumanian V.A., Kiseleva O.I., Poverennaya E.V. The curious case of the HepG2 cell line: 40 years of expertise. Int J Mol Sci. 2021; 22(23): 13135. doi: 10.3390/ijms222313135.
- Pramfalk C., Larsson L., Härdfeldt J. et al. Culturing of HepG2 cells with human serum improves their functionality and suitability in studies of lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids. 2016; 1861(1): 51–59. doi: 10.1016/j.bbalip.2015.10.008.
- Liang H., Huang Y., Zhang Y. et al. Inhibitory effect of gardenoside on free fatty acid-induced steatosis in HepG2 hepatocytes. Int J Mol Sci. 2015; 16(11): 27749–27756. doi: 10.3390/ijms161126058.
- Gómez-Lechón M.J., Donato M.T., Martínez-Romero A. et al. A human hepatocellular in vitro model to investigate steatosis. Chem Biol Interact. 2007; 165(2): 106–116. doi: 10.1016/j.cbi.2006.11.004.
- van der Vusse G.J. Albumin as fatty acid transporter. Drug Metab Pharmacokinet. 2009; 24(4): 300–307. doi: 10.2133/dmpk.24.300.
- Alsabeeh N., Chausse B., Kakimoto P.A. et al. Cell culture models of fatty acid overload: Problems and solutions. Biochim Biophys Acta Mol Cell Biol Lipids. 2018; 1863(2): 143–151. doi: 10.1016/j.bbalip.2017.11.006.
- Sergi D., Luscombe-Marsh N., Naumovski N. et al. Palmitic acid, but not lauric acid, induces metabolic inflammation, mitochondrial fragmentation, and a drop in mitochondrial membrane potential in human primary myotubes. Front Nutr. 2021; 8: 663838. doi: 10.3389/fnut.2021.663838.
- HepG2 Cell Culture. HepG2 Transfection. Accessed July 30, 2024. URL: https://hepg2.com/.
- Cell Proliferation Assay Kit XTT. AppliChem GmbH. Accessed August 20, 2024. URL: https://www.itwreage-nts.com/download_file/info_point/IP-029/en/IP-029_en.pdf.
- Randox Triglycerides (GPO-PAP). Randox Laboratories Ltd. Accessed August 20, 2024. URL: https://www.ran-dox.com/triglycerides-2/#1439389458347-fe65c57e-0e0b.
- Pierce™ BCA Protein Assay Kit. Thermo Fisher Scientific. Accessed August 20, 2024. URL: https://www.thermofi-sher. com/document-connect/document-con-nect.html? url=https:// assets.thermofisher.com/TFS-Assets/LSG/manuals/MAN00 11430_Pierce_BCA_Protein_Asy_UG.pdf.
- Интерлейкин-8 (ИЛ-8). ООО «Цитокин». Accessed July 30, 2024. URL: http://cytokine.ru/index.php?id=71.
- Щербакова Е.С., Салль Т.С., Ищенко А.М. и др. Иссле-дование процессов липогенеза и воспаления при неал-когольной жировой болезни печени на модели стеатоза с использованием клеток HepG2. Известия Санкт-Петер-бургского государственного технологического института (технического университета). 2019; 50(76): 92–96. [Shcherbakova ES., Sall TS., Ishchenko AM. et al. Study of lipogenesis and inflammation processes in nonalcoholic fatty liver disease on a steatosis model using HepG2 cells. Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta). 2019; 50(76): 92–96. (In Russ.)].
- Hosek J., Zavalova V., Kollar P. Effect of solvent on cytotoxicity and bioavailability of fatty acids. Immunopharmacol Immunotoxicol. 2010; 32(3): 462–465. doi: 10.3109/08923970903513147.
- Cupp D., Kampf J.P., Kleinfeld A.M. Fatty acid–albumin complexes and the determination of the transport of long chain free fatty acids across membranes. Biochemistry. 2004; 43(15): 4473–4481. doi: 10.1021/bi036335l.
补充文件
