Optical Properties of Two-Dimensional Layered Structures in the Infrared Range
- Authors: Fradkin I.M.1, Chermoshentsev D.A.2, Anikin E.V.3, Dyakov S.A.1, Gippius N.A.1
-
Affiliations:
- Skolkovo Institute of Science and Technology
- Russian Quantum Center, LLC
- Russian quantum center
- Issue: Vol 117, No 1 (2023): ТЕМАТИЧЕСКИЙ БЛОК: СОВРЕМЕННЫЕ ПРОБЛЕМЫ ФОТОНИКИ ИНФРАКРАСНОГО ДИАПАЗОНА
- Pages: 12-30
- Section: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://journal-vniispk.ru/1605-8070/article/view/299392
- DOI: https://doi.org/10.22204/2410-4639-2023-117-01-12-30
- ID: 299392
Cite item
Full Text
Abstract
Infrared optics is extremely widespread in modern science and technology. Almost all telecommunications equipment operates in the infrared range, thermal radiation is also most pronounced in the infrared region of the spectrum. Night vision devices are based on its detection. Therefore, infrared radiation plays an important role in nearfield radiative heat transfer and is also used in spectroscopy and many other scientific applications. In recent years, advanced nanostructuring techniques aimed at manipulating light at the nanoscale have become widespread. In particular, photonic crystals, metasurfaces and nanoresonators are actively used. In this work, we consider the possibilities of using two-dimensional layered structures in the optical and infrared ranges. In particular, we consider the possibility of using Dyakonov surface waves in confined media, as well as collective resonances in the lattices of plasmonic nanoparticles. Both types of structures make it possible to localize light on the submicroscale, enhance the interaction of light with matter, and effectively control the propagation of electromagnetic waves.
About the authors
Ilya M. Fradkin
Skolkovo Institute of Science and Technology
Author for correspondence.
Email: Ilia.Fradkin@skoltech.ru
Russian Federation, 30-1 Bolshoy Blvrd, Moscow, 121205, Russia
Dmitry A. Chermoshentsev
Russian Quantum Center, LLC
Email: dac@rqc.ru
Russian Federation, 30-1 Bolshoy Blvrd, Moscow, 121205, Russia
Evgeny V. Anikin
Russian quantum center
Email: evgenii.anikin@skoltech.ru
Russian Federation, 30-1 Bolshoy Blvrd, Moscow, 121205, Russia
Sergey A. Dyakov
Skolkovo Institute of Science and Technology
Email: s.dyakov@skoltech.ru
Russian Federation, 30-1 Bolshoy Blvrd, Moscow, 121205, Russia
Nikolay A. Gippius
Skolkovo Institute of Science and Technology
Email: n.gippius@skoltech.ru
Professor
Russian Federation, 30-1 Bolshoy Blvrd, Moscow, 121205, RussiaReferences
- H. Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Ser. Springer Tracts in Modern Physics. FRG: Berlin, Heidelberg: Springer-Verlag, 1988. P. 78. doi: 10.1007/bfb0048317.
- A.P. Vinogradov, A.V. Dorofeenko, A.M. Merzlikin, A.A. Lisyansky Phys.-Usp., 2010, 53(3), 243, doi: 10.3367/UFNe.0180.201003b.0249.
- S. A. Dyakov, A. Baldycheva, T. S. Perova, G. V. Li, E. V. Astrova, N. A. Gippius, S. G. Tikhodeev. Phys. Rev. B, 2012, 86, 115126. doi: 10.1103/PhysRevB.86.115126.
- Ya. V. Kartashov, V. A. Vysloukh, L. Torner. Phys. Rev. Lett., 2006, 96(7), 073901. doi: 10.1103/PhysRevLett.96.073901.
- M.I. Diyakonov Sov. Phys. JETP, 1988, 67(4), 714.
- D. B. Walker, E. N. Glytsis, T. K. Gaylord. J. Opt. Soc. Am. A, 1998, 15(1), 248. doi: 10.1364/josaa.15.000248.
- S. Yu. Karpov. Phys. Status Solidi B, 2019, 256(3), 1800609. doi: 10.1002/pssb.201800609.
- M.V. Zakharchenko, G.F. Glinskii Technical Physics, 2022, 67(11), 1489. doi: 10.21883/TP.2022.11.55180.140-22.
- O. Takayama, L. Crasovan, D. Artigas, L. Torner. Phys. Rev. Lett., 2009, 102(4), 2. doi: 10.1103/PhysRevLett.102.043903.
- O. Takayama, D. Artigas, L. Torner. Nat. Nanotechnol., 2014, 9(6), 419. doi: 10.1038/nnano.2014.90.
- F. Chiadini, V. Fiumara, A. Scaglione, A. Lakhtakia. J. Opt. Soc. Am. B, 2016, 33(6), 1197. doi: 10.1364/josab.33.001197.
- D. Artigas, L. Torner. Phys. Rev. Lett., 2005, 94(1), 013901. doi: 10.1103/PhysRevLett.94.013901.
- O. Takayama, D. Artigas, L. Torner. Opt. Lett., 2012, 37(11), 1983. doi: 10.1364/OL.37.001983.
- V. Kajorndejnukul, D. Artigas, L. Torner. Phys. Rev. B, 2019, 100(19), 1. doi: 10.1103/PhysRevB.100.195404.
- K. Yu. Golenitskii, A. A. Bogdanov. Phys. Rev. B, 2020, 101(16), 165434. doi: 10.1103/PhysRevB.101.165434.
- D. A. Chermoshentsev, E. V. Anikin, S. A. Dyakov, N. A. Gippius. Nanophotonics, 2020, 9(16), 4785. doi: 10.1515/nanoph-2020-0459.
- E. V. Anikin, D. A. Chermoshentsev, S. A. Dyakov, N. A. Gippius. Phys. Rev. B, 2020, 102(16), 161113. doi: 10.1103/PhysRevB.102.161113.
- N. S. Averkiev, M. I. Dyakonov. Opt. Spectrosc., 1990, 68, 653.
- O. Takayama, A. Yu. Nikitin, L. Martin-Moreno, L. Torner, D. Artigas. Opt. Express, 2011, 19(7), 6339. doi: 10.1364/oe.19.006339.
- L. Li. J. Opt. A: Pure Appl. Opt., 2003, 5(4), 345. doi: 10.1088/1464-4258/5/4/307.
- T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, H. Giessen. Opt. Express, 2009, 17(10), 8051. doi: 10.1364/OE.17.008051.
- S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, T. Ishihara. Phys. Rev. B, 2002, 66, 045102. doi: 10.1103/PhysRevB.66.045102.
- Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Zh.-K. Zhou, X. Wang, Ch. Jin, J. Wang. Nature Commun., 2013, 4(1), 2381. doi: 10.1038/ncomms3381.
- A. Poddubny, I. Iorsh, P. Belov, Yu. Kivshar. Nature Photon., 2013, 7(12), 948. doi: 10.1038/nphoton.2013.243.
- V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, A. V. Kildishev. Opt. Lett., 2005, 30(24), 3356. doi: 10.1364/OL.30.003356.
- B. B. Rajeeva, L. Lin, Yu. Zheng. Nano Res., 2018, 11(9), 4423. doi: 10.1007/s12274-017-1909-4.
- A. Vaskin, R. Kolkowski, A. F. Koenderink, I. Staude. Nanophotonics, 2019, 8(7), 1151. doi: 10.1515/nanoph-2019-0110.
- A. H. Schokker, F. van Riggelen, Ya. Hadad, A. Alù, A. F. Koenderink. Phys. Rev. B, 2017, 95(8), 085409. doi: 10.1103/PhysRevB.95.085409.
- F. J. G. de Abajo. Rev. Mod. Phys., 2007, 79, 1267. doi: 10.1103/RevModPhys.79.1267.
- S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, T. Ishihara. Phys. Rev. B, 2002, 66(4), 045102. doi: 10.1103/PhysRevB.66.045102.
- S. Baur, S. Sanders, A. Manjavacas. ACS Nano, 2018, 12(2), 1618. doi: 10.1021/acsnano.7b08206.
- A. Berkhout, A. F. Koenderink. ACS Photonics, 2019, 6(11), 2917. doi: 10.1021/acsphotonics.9b01019.
- I. M. Fradkin, S. A. Dyakov, N. A. Gippius. Phys. Rev. B, 2019, 99(7), 075310. doi: 10.1103/PhysRevB.99.075310.
- I. M. Fradkin, S. A. Dyakov, N. A. Gippius. Phys. Rev. B, 2020, 102(4), 045432. doi: 10.1103/PhysRevB.102.045432.
- I. M. Fradkin, S. A. Dyakov, N. A. Gippius. Phys. Rev. Applied, 2020, 14(5), 054030. doi: 10.1103/PhysRevApplied.14.054030.
- I. M. Fradkin, A. A. Demenev, V. D. Kulakovskii, V. N. Antonov, N. A. Gippius. Appl. Phys. Lett., 2022, 120(17), 171702. doi: 10.1063/5.0085786.
- P. A. Belov, K. R. Simovski. Phys. Rev. E, 2005, 72, 026615. doi: 10.1103/PhysRevE.72.026615.
Supplementary files
