IR Photodetectors Based on Lead and Mercury Chalcogenides Colloidal Quantum Dots
- Authors: Razumov V.F.1, Brichkin S.B.1
-
Affiliations:
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS
- Issue: Vol 117, No 1 (2023): ТЕМАТИЧЕСКИЙ БЛОК: СОВРЕМЕННЫЕ ПРОБЛЕМЫ ФОТОНИКИ ИНФРАКРАСНОГО ДИАПАЗОНА
- Pages: 89-98
- Section: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://journal-vniispk.ru/1605-8070/article/view/299517
- DOI: https://doi.org/10.22204/2410-4639-2023-117-01-89-98
- ID: 299517
Cite item
Full Text
Abstract
Methods for high-temperature colloidal synthesis of PbS, HgSe, and HgTe nanocrystals have been developed, a detailed analysis of the chemical composition of the cores and shells of these nanocrystals has been carried out, and laboratory samples of near- and mid-IR photodetectors based on these nanocrystals have been created.
About the authors
Vladimir F. Razumov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS
Author for correspondence.
Email: razumovvf@list.ru
Professor, RAS Corresponding Member
Russian Federation, 1 Semenov Ave., Chernogolovka, 142432, Moscow region, RussiaSergey B. Brichkin
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS
Email: brichkin@icp.ac.ru
1 Semenov Ave., Chernogolovka, 142432, Moscow region, Russia
References
- A. Rogalski. Prog. Quant. Electron., 2012, 36(2–3), 342. doi: 10.1016/j.pquantelec.2012.07.001.
- C.L. Tan, H. Mohseni. Nanophotonics, 2018, 7(1), 169. doi: 10.1515/nanoph-2017-0061.
- G. Konstantatos, E.H. Sargent. Infrared Phys. Techn., 2011, 54, 278. doi: 10.1016/j.infrared.2010.12.029.
- A.P. Litvin, I.V. Martynenko, F. Purcell-Milton, A.V. Baranov, A.V. Fedorov, Y.K. Gun’ko. J. Mater. Chem. A, 2017, 5, 13252. doi: 10.1039/c7ta02076g.
- S.B. Hafiz, M. Scimeca, A. Sahu, D.-K. Ko. Nano Convergence, 2019, 6(7). doi: 10.1186/s40580-019-0178-1.
- E. Lhuillier, S. Keuleyan, H. Liu, P. Guyot-Sionnest. Chem. Mater., 2013, 25, 1272. doi: 10.1021/cm303801s.
- S. Chan, M. Liu, K. Latham, M. Haruta, H. Kurata, T. Teranishi, Y. Tachibana. J. Mater. Chem. C, 2017, 5, 2182. doi: 10.1039/c6tc05329g.
- A. Robin, C. Livache, S. Ithurria, E. Lacaze, B. Dubertret, E. Lhuillier. ACS Appl. Mater. Inter., 2016, 8(40), 27122. doi: 10.1021/acsami.6b09530.
- S. Keuleyan, E. Lhuillier, P. Guyot-Sionnest. J. Am. Chem. Soc., 2011, 133(41), 16422. doi: 10.1021/ja2079509.
- T. Shen, J. Yuan, X. Zhong, J. Tian. J. Mater. Chem. C, 2019, 7(21), 6266. doi: 10.1039/C9TC00079H.
- S.B. Brichkin, V.Yu. Gak, M.G. Spirin, A.V. Gadomska, S.I. Bocharova, V.F. Razumov. High Energy Chem., 2020, 54(1), 36. doi: 10.1134/S0018143920010038.
- D. Sokolova, D.V. Dyomkin, A.V. Katsaba, S.I. Bocharova, V.F. Razumov. Infrared Phys. Techn., 2022, 123(3), 104188. doi: 10.1016/j.infrared.2022.104188.
- V.Yu. Gak, A.V. Gadomska, M.G. Spirin, D.N. Pevtsov, A.V. Katsaba, S.B. Brichkin, V.F. Razumov. High Energy Chem., 2022, 56(2), 91. doi: 10.1134/S0018143922020035.
Supplementary files
