Electro-Oxidative Th iocyanidation of Azopyrazoles

Cover Page

Cite item

Full Text

Abstract

The possibility of electrooxidative C—H functionalization of azopyrazoles was demonstrated for the first time on the example of their mono- and dithiocyanation under mild conditions with a yield of 47–52%. The main patterns of the process were studied and the antifungal activity of the resulting products was revealed, comparable to or superior to the antifungal drug fluconazole.

About the authors

Anastasia S. Kudinova

N.D. Zelinsky Institute of Organic Chemistry RAS

Author for correspondence.
Email: ana_kudinova@mail.ru
Russian Federation, 47 Leninsky Ave., Moscow, 119991, Russia

Ekaterina D. Siling

N.D. Zelinsky Institute of Organic Chemistry RAS

Email: kate720@yandex.ru
Russian Federation, 47 Leninsky Ave., Moscow, 119991, Russia

Natalia V. Gorpichenko

I.M. Sechenov First Moscow State Medical University, MOH RF, (Sechenov University)

Email: Gorpinchenko_n_v@staff.sechenov.ru
Russian Federation, 96 bld.1 Vernadsky Ave., Moscow, 119571, Russia

Vera L. Sigacheva

N.D. Zelinsky Institute of Organic Chemistry RAS

Email: siga@ioc.ac.ru
Russian Federation, 47 Leninsky Ave., Moscow, 119991, Russia

Boris V. Lyalin

N.D. Zelinsky Institute of Organic Chemistry RAS

Email: lyalin@ioc.ac.ru
Russian Federation, 47 Leninsky Ave., Moscow, 119991, Russia

Vladimir A. Kokorekin

N.D. Zelinsky Institute of Organic Chemistry RAS

Email: vakokorekin@ioc.ac.ru
Russian Federation, 47 Leninsky Ave., Moscow, 119991, Russia

References

  1. V.M. Dembitsky, T.A. Gloriozova, V.V. Poroikov Nat. Prod. Bioprosp., 2017, 7, 151. doi: 10.1007/s13659-016-0117-3.
  2. S. Benkhaya, S. M’rabet, A. El Harfi Heliyon, 2020, 6, e03271. doi: 10.1016/j.heliyon.2020.e03271.
  3. Y. Qu, S.P. Babailov J. Mater. Chem. A, 2018, 6, 1915. doi: 10.1039/C7TA09593G.
  4. M.-Y. Zhao, Y.-F. Tang, G.-Z. Han Molecules, 2023, 28, 6741. doi: 10.3390/molecules28186741.
  5. B.V. Lyalin, V.L. Sigacheva, V.A. Kokorekin, V.A. Petrosyan Tetrahedron Lett., 2018, 59, 2741. doi: 10.1016/j.tetlet.2018.05.089.
  6. B.V. Lyalin, V.L. Sigacheva, A.S. Kudinova, S.V. Neverov, V.A. Kokorekin, V.A. Petrosyan Molecules, 2021, 26, 4749. doi: 10.3390/molecules26164749.
  7. R.E. Frank, D.N. Hume J. Am. Chem. Soc., 1953, 75, 1736. doi: 10.1021/ja01103a509.
  8. F. Cataldo J. Inorg. Organomet. Polym., 1997, 7, 35. doi: 10.1023/a:1021613801254.
  9. N.A. Semina, S.V. Sidorenko, S.P. Rezvan, S.L. Grudinina, L.S. Strachunsky, O.U. Stetciuk, R.S. Kozlov, M.V. Eidel`Shtein, E.A. Ved`Mina, L.G. Stolyarova, I.V. Vlasova, Z.S. Sereda Clin. Mikrobiol. Antimikrob. Chimioter. [Kliniceskaa Mikrobiologia i Antimikrobnaa Himioterapia], 2004, 6(4), 306 (in Russian).
  10. M07. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically (11th Edn), USA, PA, Wayne, Clinical and Laboratory Standards Institute, 2018, 91 pp.
  11. M27. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts (4th Edn), USA, PA, Wayne, Clinical and Laboratory Standards Institute, 2017, 33 pp.
  12. EUCAST Definitive Document E.DEF 9.3.2 Method for the Determination of Broth Dilution Minimum Iinhibitory Concentrations of Antifungal Agents for Conidia Forming Moulds, European Commitee on Antimicrobial Susceptibility Testing (EUCAST), 2020, 23 pp. (https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_9.3.2_Mould_testing_definitive_revised_2020.pdf).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Kudinova A.S., Siling E.D., Gorpichenko N.V., Sigacheva V.L., Lyalin B.V., Kokorekin V.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).