Electrochemical Stereoselective Cyclopropanation and Ring Opening: a Route to Novel Cysteine Derivatives
- Authors: Levitskiy O.A.1, Magdesieva T.V.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 122, No 2 (2024): THEMED SECTION: FUNDAMENTAL PRINCIPLES OF ORGANIC ELECTROCHEMISTRY, CREATION OF NEW FUNCTIONAL MATERIALS AND MATERIALS FOR MEDICINE
- Pages: 30-39
- Section: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://journal-vniispk.ru/1605-8070/article/view/303410
- DOI: https://doi.org/10.22204/2410-4639-2024-122-02-30-39
- ID: 303410
Cite item
Full Text
Abstract
A novel strategy for the stereoselective synthesis of cysteine derivatives containing a malonate fragment in the β-position has been proposed, based on a series of consecutive transformations in the Ni(II) Schiff-base coordination environment. Electrochemical Corey–Chaykovsky cyclopropanation of the dehydroalanine complexes followed by reductive ring opening and subsequent Michael addition of S-nucleophiles to thus formed unsaturated amino acids derivatives open a route to novel cysteine derivatives. New protocol for isolation of the substituted aryl cysteines with strong CH acidity via disassembling of the Schiff-base template has been elaborated.
About the authors
Oleg A. Levitskiy
Lomonosov Moscow State University
Author for correspondence.
Email: oal@org.chem.msu.ru
Russian Federation, 1-3 Leninskie Gory, Moscow, 119991, Russia
Tatiana V. Magdesieva
Lomonosov Moscow State University
Email: tvm@org.chem.msu.ru
Professor
Russian Federation, 1-3 Leninskie Gory, Moscow, 119991, RussiaReferences
- C. Wermuth, D. Aldous, P. Raboisson, D. Rognan The Practice of Medicinal Chemistry (4th Edn), UK, London, Elsevier, Academic Press, 2015, 880 pp. doi: 10.1016/C2012-0-03066-9.
- T. Shono, Y. Matsumura, Y. Nakagawa J. Org. Chem., 1971, 36(13), 1771. doi: 10.1021/jo00812a011.
- T. Shono, Y. Matsumura Bulletin of the Chemical Society of Japan, 1975, 48(10), 2861. doi: 10.1246/bcsj.48.2861.
- S. Torii, T. Inokuchi, N. Takahasi J. Org. Chem., 1978, 43(26), 5020. doi: 10.1021/jo00420a030.
- S. Torii, T. Okamoto, N. Ueno J. Chem. Soc., Chem. Commun., 1978, №7, 293. doi: 10.1039/C39780000293.
- D.D.M. Wayner, D.R. Arnold J. Chem. Soc., Chem. Commun., 1982, №1, 1087. doi: 10.1039/C39820001087.
- Y. Matsubara, T. Uchida, T. Ohnishi, K. Kanehira, Y. Fujita, T. Hirashima, et al. Tetrahedron Letters, 1985, 26(37), 4513. doi: 10.1016/S0040-4039(00)88944-3.
- Y. Wang, J.M. Tanko J. Am. Chem. Soc., 1997, 119(35), 8201. doi: 10.1021/ja970932b.
- S. Kolb, M. Petzold, F. Brandt, P.G. Jones, C.R. Jacob, D.B. Werz Angew. Chem. Int. Ed., 2021, 60(29), 15928. doi: 10.1002/anie.202101477.
- S. Kolb, N.L. Ahlburg, D.B. Werz Org. Let., 2021, 23(14), 5549. doi: 10.1021/acs.orglett.1c01890.
- S. Oyanagi, H. Ishii, S. Inagi, T. Fuchigami J. Electrochem. Soc., 2020, 167(15), 155511. doi: 10.1149/1945-7111/abb83b.
- P. Peng, X. Yan, K. Zhang, Z. Liu, L. Zeng, Y. Chen, H. Zhang, A. Lei Nat. Commun., 2021, 12(1), 3075. doi: 10.1038/s41467-021-23401-8.
- J.M. Tanko, X. Li, M. Chahma, W.F. Jackson, J.N. Spencer J. Am. Chem. Soc., 2007, 129(14), 4181. doi: 10.1021/ja063857q.
- J.M. Tanko, R.E. Drumright J. Am. Chem. Soc., 1990, 112(13), 5362. doi: 10.1021/ja00169a060.
- J.M. Tanko, J.G. Gillmore, R. Friedline, M. Chahma J. Org. Chem., 2005, 70(10), 4170. doi: 10.1021/jo047917r.
- J. Lessard, A.J. Fry ECS Meeting Abstracts, 2017, MA2017-01(36), 1688. doi: 10.1149/ma2017-01/36/1688.
- A.J. Fry, J. Lessard ECS Transactions, 2017, 77(11), 1503. doi: 10.1149/07711.1503ecst.
- L.L. Liao, Z.H. Wang, K.G. Cao, G.Q. Sun, W. Zhang, C.K. Ran, Y. Li, L. Chen, G.-M. Cao, D.-G. Yu J. Am. Chem. Soc., 2022, 144(5), 2062. doi: 10.1021/jacs.1c12071.
- O.A. Levitskiy, O.I. Aglamazova, Y.K. Grishin, S.E. Nefedov, T.V. Magdesieva Electrochimica Acta, 2022, 409, 139980. doi: 10.1016/j.electacta.2022.139980.
- O.A. Levitskiy, O.I. Aglamazova, Y.K. Grishin, S.E. Nefedov, T.V. Magdesieva Beilstein J. Org. Chem., 2022, 18, 1166. doi: 10.3762/bjoc.18.121.
- Y. Wang, X. Song, J. Wang, H. Moriwaki, V.A. Soloshonok, H. Liu Amino Acids., 2017, 49(9), 1487. doi: 10.1007/s00726-017-2458-6.
- A.E. Sorochinsky, J.L. Aceña, H. Moriwaki, T. Sato, V.A. Soloshonok Amino Acids., 2013, 45(4), 691. doi: 10.1007/s00726-013-1539-4.
- J.L. Aceña, A.E. Sorochinsky, V. Soloshonok Amino Acids., 2014, 46(9), 2047. doi: 10.1007/s00726-014-1764-5.
- A.E. Sorochinsky, J.L. Aceña, H. Moriwaki, T. Sato, V. Soloshonok Amino Acids, 2013, 45(5), 1017. doi: 10.1007/s00726-013-1580-3.
- R. Bentley Chem. Soc. Rev., 2005, 34(7), 609. doi: 10.1039/b418284g.
Supplementary files
