Th e Relationship between the Particle Size Distribution of Aluminum Powder and the Structural-Phase Composition and Properties of the Al2O3—AlN Coating Formed under the Infl uence of Electric Arc Nitrogen Plasma
- Authors: Volchkov I.S.1, Podkur P.L.1, Muslimov A.E.1, Gadzhiev M.K.2, Ilyichev M.V.2, Kanevsky V.M.1
-
Affiliations:
- Kurchatov Complex of Crystallography and Photonics
- Joint Institute for High Temperatures, RAS
- Issue: Vol 123, No 3-4 (2024): THEMED SECTION: STRUCTURAL DIAGNOSTICS OF MATERIALS
- Pages: 60-67
- Section: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://journal-vniispk.ru/1605-8070/article/view/303513
- DOI: https://doi.org/10.22204/2410-4639-2024-123-124-03-04-60-67
- ID: 303513
Cite item
Full Text
Abstract
The relationship between the particle size distribution of aluminum powder and the structural-phase composition and properties of the Al2O3–AlN coating formed under the influence of electric arc plasma has been studied. Two types of Al powders were used: micropowder with a particle size of ~20–120 μm and nanopowder with a particle size of ~40–100 nm. It was found that coatings obtained from Al micropowder are agglomerates of pure Al interspersed with AlN and Al5O6N clusters. Coatings obtained from Al nanopowder contain Al2O3 as a base interspersed with AlN and Al5O6N agglomerates, as well as a noticeable proportion of unreacted Al. The surface morphology of the samples is heterogeneous and porous. In the process of measuring microhardness using the indentation method, a correlation with the local phase composition of the surface was discovered. The Al2O3 and AlN phases had the highest microhardness, about 9.097±0.324 GPa and 17.800±0.674 GPa, respectively. The results obtained demonstrate the promise of applying Al2O3–AlN coatings using low-temperature plasma to improve the service life of steel structures.
About the authors
Ivan S. Volchkov
Kurchatov Complex of Crystallography and Photonics
Author for correspondence.
Email: Volch2862@gmail.com
Russian Federation, 59 Leninsky Ave., Moscow, 119333, Russia
Pavel L. Podkur
Kurchatov Complex of Crystallography and Photonics
Email: vverde85@yandex.ru
Russian Federation, 59 Leninsky Ave., Moscow, 119333, Russia
Arsen E. Muslimov
Kurchatov Complex of Crystallography and Photonics
Email: amuslimov@mail.ru
Russian Federation, 59 Leninsky Ave., Moscow, 119333, Russia
Makhach Kh. Gadzhiev
Joint Institute for High Temperatures, RAS
Email: makhach@mail.ru
Russian Federation, 13 Bd. 2, Izhorskaya Str., Moscow, 125412, Russia
Maxim V. Ilyichev
Joint Institute for High Temperatures, RAS
Email: imvpl@mail.ru
Russian Federation, 13 Bd. 2, Izhorskaya Str., Moscow, 125412, Russia
Vladimir M. Kanevsky
Kurchatov Complex of Crystallography and Photonics
Email: kanev@crys.ras.ru
Russian Federation, 59 Leninsky Ave., Moscow, 119333, Russia
References
- L.M. Goldman, S. Balasubramanian, U. Kashalikar, R. Foti, S. Sastri In Proc. SPIE 8708, Window and Dome Technologies and Materials XIII (4 June 2013), US, MD, Baltimore, 2013, 870804. doi: 10.1117/12.2016867.
- D.C. Harris Infrared Phys. Technol., 1998, 39(4), 185. doi: 10.1016/S1350-4495(98)00006-1.
- S.S. Byeon, K. Wang, Y.G. Jung, B.H. Koo Surf. Coat. Technol., 2010, 204(20), 3196. doi: 10.1016/j.surfcoat.2010.03.010.
- M. Nose, T. Kawabata, S. Ueda, T. Nagae, A. Saiki, K. Matsuda, K. Terayama, S. Ikeno J. Jpn Soc. Powder Powder Metall., 2008, 55(11), 795. doi: 10.2497/jjspm.55.795.
- A.P. Tarasov, A.M. Ismailov, M.K. Gadzhiev, I.D. Venevtsev, A.E. Muslimov, I.S. Volchkov, S.R. Aidamirova, A.S. Tyuftyaev, A.V. Butashin, V.M. Kanevsky Photonics, 2023, 10, 1354. doi: 10.3390/photonics10121354.
- A. Muslimov, S. Antipov, M. Gadzhiev, V. Kanevsky Metals, 2023, 13, 1927. doi: 10.3390/met13121927.
- A.E. Muslimov, M.K. Gadzhiev, V.M. Kanevsky Coatings, 2021, 11, 1369. doi: 10.3390/coatings11111369.
- E.K. Isakaev, O.A. Sinkevich, A.S. Tyuftyaev, V.F. Chinnov High Temperature, 2010, 48(1), 97. doi: 10.1134/S0018151X10010141.
- E.K. Isakaev, A.S. Tyuftyaev, M.Kh. Gadzhiev Physics and Chemistry of Materials Treatment [Fizika i khimia obrabotki materialov], 2016, 3, 27 (in Russian).
- W.C. Oliver, G.M. Pharr J. Mater. Res., 2004, 19(1), 3. doi: 10.1557/jmr.2004.19.1.3.
- H.X. Willems, M.M.R.M. Hendrix, G. de With, R. Metselaar J. European Ceram. Soc., 1992, 10(4), 339. doi: 10.1016/0955-2219(92)90089-V.
- F.I. Panteleenko, T.I. Bendik, V.A. Sidorov, V.Yu. Sereda, A.A. Litvinko In Proc. Irst International Scientific and Technical Conference: Current Issues and Advanced Welding Technologies in Science and Industry, BY, Mogilev, 2022, pp. 170–175 (in Russian).
- V.V. Tuliev, I.S. Tashlykov Proceedings of BSTU [Trudy BGTU], 2016, 6, 96 (in Russian).
- Z. Yin, S. Tao, X. Zhou, C. Ding J. Phys. D Appl. Phys., 2007, 40(22), 7090. doi: 10.1088/0022-3727/40/22/034.
- I. Yonenaga MRS Internet J. Nitride Semicond. Res., 2002, 7(6), 1. doi: 10.1557/s1092578300000326.
- J. Cintas, E.S. Caballero, J.M. Montes, F.G. Cuevas, C. Arevalo Adv. Mater. Sci. Eng., 2014, 2014, 617241. doi: 10.1155/2014/617241.
Supplementary files
