Uniqueness theorems for one-dimensional and double Franklin series

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper contains two main results. First we describe one-dimensional Franklin series converging everywhereexcept possibly on a finite set to an everywhere-finite integrable function. Second we establish a class of subsetsof $[0, 1]^2$ with the following property. If a double Franklin series converges everywhere except on this set to an everywhere-finite integrable function, then it is the Fourier–Franklin series of this function. In particular, all countablesets are in this class.

作者简介

Gegham Gevorkyan

Yerevan State University

Email: ggg@ysu.am
Doctor of physico-mathematical sciences, Professor

参考

  1. G. Cantor, “Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen”, Math. Ann., 5:1 (1872), 123–132
  2. Н. К. Бари, Тригонометрические ряды, Физматгиз, М., 1961, 936 с.
  3. Л. Д. Гоголадзе, “К вопросу восстановления коэффициентов сходящихся кратных функциональных рядов”, Изв. РАН. Сер. матем., 72:2 (2008), 83–90
  4. Ch. J. de la Vallee Poussin, “Sur l'unicite du developpement trigonometrique”, Bull. Acad. Roy. de Belg., 1912 (1912), 702–718
  5. А. А. Талалян, “Представление измеримых функций рядами”, УМН, 15:5(95) (1960), 77–141
  6. П. Л. Ульянов, “Решенные и нерешенные проблемы теории тригонометрических и ортогональных рядов”, УМН, 19:1(115) (1964), 3–69
  7. G. Kozma, A. Olevskiv{i}, Cantor uniqueness and multiplicity along subsequences, 2018
  8. В. Я. Козлов, “О полных системах ортогональных функций”, Матем. сб., 26(68):3 (1950), 351–364
  9. Н. К. Бари, “О всюду сходящихся к нулю подпоследовательностях частных сумм тригонометрического ряда”, Изв. АН СССР. Сер. матем., 24:4 (1960), 531–548
  10. Ф. Г. Арутюнян, “О единственности рядов по системе Хаара”, Докл. АН Арм. ССР, 38:3 (1964), 129–134
  11. М. Б. Петровская, “О нуль-рядах по системе Хаара и множествах единственности”, Изв. АН СССР. Сер. матем., 28:4 (1964), 773–798
  12. В. А. Скворцов, “Теорема типа Кантора для системы Хаара”, Вестн. Моск. ун-та. Сер. 1 Матем. Мех., 1964, № 5, 3–6
  13. Ф. Г. Арутюнян, А. А. Талалян, “О единственности рядов по системам Хаара и Уолша”, Изв. АН СССР. Сер. матем., 28:6 (1964), 1391–1408
  14. М. Г. Плотников, “$lambda$-Сходимость кратных рядов Уолша–Пэли и множества единственности”, Матем. заметки, 102:2 (2017), 292–301
  15. М. Г. Плотников, Ю. А. Плотникова, “Разложение двоичных мер и объединение замкнутых $mathscr{U}$-множеств для рядов по системе Хаара”, Матем. сб., 207:3 (2016), 137–152
  16. Г. Г. Геворкян, К. А. Навасардян, “Теоремы единственности для обобщенной системы Хаара”, Матем. заметки, 104:1 (2018), 11–24
  17. Г. Г. Геворкян, К. А. Навасардян, “Теоремы единственности для системы Виленкина”, Известия НАН РА. Математика, 53:2 (2018), 15–30
  18. Г. Г. Геворкян, “Теоремы единственности рядов Франклина, сходящихся к интегрируемым функциям”, Матем. сб., 209:6 (2018), 25–46
  19. Z. Ciesielski, “Properties of the orthonormal Franklin system. II”, Studia Math., 27 (1966), 289–323
  20. Г. Г. Геворкян, “О рядах по системе Франклина”, Anal. Math., 16:2 (1990), 87–114
  21. Г. Г. Геворкян, “Теоремы единственности для рядов Франклина”, Гармонический анализ, теория приближений и теория чисел, Сборник статей. К 60-летию со дня рождения академика Сергея Владимировича Конягина, Тр. МИАН, 303, МАИК «Наука/Интерпериодика», М., 2018, 67–86
  22. Ph. Franklin, “A set of continuous orthogonal functions”, Math. Ann., 100:1 (1928), 522–529
  23. Б. С. Кашин, А. А. Саакян, Ортогональные ряды, 2-е изд., АФЦ, М., 1999, x+550 с.
  24. Z. Ciesielski, “Properties of the orthonormal Franklin system”, Studia Math., 23 (1963), 141–157
  25. Л. Д. Гоголадзе, “Об ограниченности сходящихся средних кратных функциональных рядов”, Матем. заметки, 34:6 (1983), 845–855
  26. Ш. Т. Тетунашвили, “О некоторых кратных функциональных рядах и решение проблемы единственности кратных тригонометрических рядов для сходимости по Прингсхейму”, Матем. сб., 182:8 (1991), 1158–1176
  27. В. Г. Челидзе, Некоторые методы суммирования двойных рядов и двойных интегралов, Изд-во Тбилисского ун-та, Тбилиси, 1977, 399 с.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Gevorkyan G.G., 2020

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».