On a spectral sequence for the action of the Torelli group of genus $3$ on the complex of cycles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Torelli group of a closed oriented surface $S_g$ of genus $g$ is the subgroup$\mathcal{I}_g$ of the mapping class group $\operatorname{Mod}(S_g)$ consisting ofall mapping classes that act trivially on the homology of $S_g$. One of the most intriguingopen problems concerning Torelli groups is the question of whether the group $\mathcal{I}_3$is finitely presented. A possible approach to this problem relies on the study of the secondhomology group of $\mathcal{I}_3$ using the spectral sequence $E^r_{p,q}$ for the actionof $\mathcal{I}_3$ on the complex of cycles. In this paper we obtain evidence forthe conjecture that $H_2(\mathcal{I}_3;\mathbb{Z})$ is not finitely generated and hence$\mathcal{I}_3$ is not finitely presented. Namely, we prove that the term $E^3_{0,2}$ ofthe spectral sequence is not finitely generated, that is, the group $E^1_{0,2}$ remainsinfinitely generated after taking quotients by the images of the differentials $d^1$ and $d^2$.Proving that it remains infinitely generated after taking the quotient by the imageof $d^3$ would complete the proof that $\mathcal{I}_3$ is not finitely presented.

About the authors

Alexander Aleksandrovich Gaifullin

Steklov Mathematical Institute of Russian Academy of Sciences

Email: agaif@mi-ras.ru
Doctor of physico-mathematical sciences, no status

References

  1. D. McCullough, A. Miller, “The genus $2$ Torelli group is not finitely generated”, Topology Appl., 22:1 (1986), 43–49
  2. G. Mess, “The Torelli groups for genus $2$ and $3$ surfaces”, Topology, 31:4 (1992), 775–790
  3. D. Johnson, “The structure of the Torelli group. I. A finite set of generators for $mathcal{I}$”, Ann. of Math. (2), 118:3 (1983), 423–442
  4. R. Kirby, “Problems in low-dimensional topology”, Geometric topology (Athens, GA, 1993), AMS/IP Stud. Adv. Math., 2.2, Amer. Math. Soc., Providence, RI; International Press, Cambridge, MA, 1997, 35–473
  5. M. Bestvina, K.-U. Bux, D. Margalit, “The dimension of the Torelli group”, J. Amer. Math. Soc., 23:1 (2010), 61–105
  6. T. E. Brendle, B. Farb, “The Birman–Craggs–Johnson homomorphism and abelian cycles in the Torelli group”, Math. Ann., 338:1 (2007), 33–53
  7. R. Hain, “The rational cohomology ring of the moduli space of abelian $3$-folds”, Math. Res. Lett., 9:4 (2002), 473–491
  8. T. Akita, “Homological infiniteness of Torelli groups”, Topology, 40:2 (2001), 213–221
  9. A. A. Gaifullin, On infinitely generated homology of Torelli groups
  10. D. Johnson, “The structure of the Torelli group. II. A characterization of the group generated by twists on bounding curves”, Topology, 24:2 (1985), 113–126
  11. A. A. Gaifullin, On the top homology group of Johnson kernel
  12. D. Johnson, “The structure of the Torelli group. III. The abelianization of $mathscr{I}$”, Topology, 24:2 (1985), 127–144
  13. R. Hain, “Infinitesimal presentations of the Torelli groups”, J. Amer. Math. Soc., 10:3 (1997), 597–651
  14. M. Kassabov, A. Putman, “Equivariant group presentations and the second homology group of the Torelli group”, Math. Ann., 376:1-2 (2020), 227–241
  15. J. Miller, P. Patzt, J. C. H. Wilson, “Central stability for the homology of congruence subgroups and the second homology of Torelli groups”, Adv. Math., 354 (2019), 106740, 45 pp.
  16. A. Kupers, O. Randal-Williams, “On the cohomology of Torelli groups”, Forum Math. Pi, 8 (2020), e7, 83 pp.
  17. A. Hatcher, D. Margalit, “Generating the Torelli group”, Enseign. Math. (2), 58:1-2 (2012), 165–188
  18. B. Farb, D. Margalit, A primer on mapping class groups, Princeton Math. Ser., 49, Princeton Univ. Press, Princeton, NJ, 2012, xiv+472 pp.
  19. N. V. Ivanov, Subgroups of Teichmüller modular groups, Transl. Math. Monogr., 115, Amer. Math. Soc., Providence, RI, 1992, xii+127 pp.
  20. К. С. Браун, Когомологии групп, Наука, М., 1987, 384 с.
  21. L. Evens, The cohomology of groups, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1991, xii+159 pp.
  22. A. Putman, “Cutting and pasting in the Torelli group”, Geom. Topol., 11 (2007), 829–865
  23. J. S. Birman, A. Lubotzky, J. McCarthy, “Abelian and solvable subgroups of the mapping class groups”, Duke Math. J., 50:4 (1983), 1107–1120
  24. J. S. Birman, R. Craggs, “The $mu$-invariant of $3$-manifolds and certain structural properties of the group of homeomorphisms of a closed, oriented $2$-manifold”, Trans. Amer. Math. Soc., 237 (1978), 283–309
  25. D. Johnson, “Quadratic forms and the Birman–Craggs homomorphisms”, Trans. Amer. Math. Soc., 261:1 (1980), 235–254
  26. А. А. Гайфуллин, “О продолжении гомоморфизма Бирман–Крэггса–Джонсона”, УМН, 72:6(438) (2017), 201–202
  27. S. Morita, “On the structure of the Torelli group and the Casson invariant”, Topology, 30:4 (1991), 603–621
  28. В. Магнус, А. Каррас, Д. Солитэр, Комбинаторная теория групп. Представление групп в терминах образующих и соотношений, Наука, М., 1974, 455 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Gaifullin A.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).