Criteria for $C^1$-approximability of functions on compact sets in ${\mathbb{R}}^N$, $N \geq 3$, by solutions of second-order homogeneous elliptic equations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We obtain capacitive criteria for the approximability of individual functions by solutions of second-order homogeneous ellipticequations with constant complex coefficients in the norm of a Whitney-type $C^1$-space on a compact setin $\mathbb{R}^N$, $N \geq 3$. The case $N=2$ was studied in a recent paper by the author and Tolsa.For $C^1$-approximations by harmonic functions (with any $N$), weaker criteria were earlier found by the author.We establish some metric properties of the capacities considered.

About the authors

Petr Vladimirovich Paramonov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Saint Petersburg State University

Email: petr.paramonov@list.ru

References

  1. М. Я. Мазалов, П. В. Парамонов, К. Ю. Федоровский, “Условия $C^m$-приближаемости функций решениями эллиптических уравнений”, УМН, 67:6(408) (2012), 53–100
  2. P. V. Paramonov, X. Tolsa, “On $C^1$-approximability of functions by solutions of second order elliptic equations on plane compact sets and $C$-analytic capacity”, Anal. Math. Phys., 9:3 (2019), 1133–1161
  3. Л. Хeрмандер, Анализ линейных дифференциальных операторов с частными производными, т. 1, Теория распределений и анализ Фурье, Мир, М., 1986, 464 с.
  4. A. G. O'Farrell, “Rational approximation in Lipschitz norms. II”, Proc. Roy. Irish Acad. Sect. A, 79:11 (1979), 103–114
  5. J. Verdera, “$C^m$-approximation by solutions of elliptic equations, and Calderon–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187
  6. П. В. Парамонов, “Критерии индивидуальной $C^m$-приближаемости функций решениями однородных эллиптических уравнений второго порядка на компактах в $mathbb R^N$”, Матем. сб., 209:6 (2018), 83–97
  7. П. В. Парамонов, “О гармонических аппроксимациях в $C^1$-норме”, Матем. сб., 181:10 (1990), 1341–1365
  8. А. Г. Витушкин, “Аналитическая емкость множеств в задачах теории приближений”, УМН, 22:6(138) (1967), 141–199
  9. Дж. Вердера, М. С. Мельников, П. В. Парамонов, “$C^1$-аппроксимация и продолжение субгармонических функций”, Матем. сб., 192:4 (2001), 37–58
  10. R. Harvey, J. C. Polking, “A Laurent expansion for solutions to elliptic equations”, Trans. Amer. Math. Soc., 180 (1973), 407–413
  11. П. В. Парамонов, “Некоторые новые критерии равномерной приближаемости функций рациональными дробями”, Матем. сб., 186:9 (1995), 97–112
  12. М. Я. Мазалов, П. В. Парамонов, “Критерии $C^m$-приближаемости бианалитическими функциями на плоских компактах”, Матем. сб., 206:2 (2015), 77–118
  13. P. Mattila, P. V. Paramonov, “On geometric properties of harmonic $operatorname{Lip}_1$-capacity”, Pacific J. Math., 171:2 (1995), 469–491
  14. R. Harvey, J. Polking, “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125 (1970), 39–56
  15. В. Я. Эйдерман, “Оценки потенциалов и $delta$-субгармонических функций вне исключительных множеств”, Изв. РАН. Сер. матем., 61:6 (1997), 181–218
  16. V. Eiderman, F. Nazarov, A. Volberg, “Vector-valued Riesz potentials: Cartan-type estimates and related capacities”, Proc. Lond. Math. Soc. (3), 101:3 (2010), 727–758
  17. А. Г. Витушкин, “Пример множеств положительной длины, но нулевой аналитической емкости”, Докл. АН СССР, 127:2 (1959), 246–249
  18. X. Tolsa, “Painleve's problem and the semiadditivity of analytic capacity”, Acta Math., 190:1 (2003), 105–149
  19. X. Tolsa, “The semiadditivity of continuous analytic capacity and the inner boundary conjecture”, Amer. J. Math., 126:3 (2004), 523–567
  20. A. Volberg, Calderon–Zygmund capacities and operators on nonhomogeneous spaces, CBMS Regional Conf. Ser. in Math., 100, Amer. Math. Soc., Providence, RI, 2003, iv+167 pp.
  21. A. Ruiz de Villa, X. Tolsa, “Characterization and semiadditivity of the $mathcal C^1$-harmonic capacity”, Trans. Amer. Math. Soc., 362:7 (2010), 3641–3675
  22. G. David, J. L. Journe, S. Semmes, “Operateurs de Calderon–Zygmund, fonctions para-accretives et interpolation”, Rev. Mat. Iberoamericana, 1:4 (1985), 1–56
  23. F. Nazarov, S. Treil, A. Volberg, “The {$Tb$}-theorem on non-homogeneous spaces”, Acta Math., 190:2 (2003), 151–239
  24. F. Nazarov, S. Treil, A. Volberg, “Weak type estimates and Cotlar inequalities for Calderon–Zygmund operators on nonhomogeneous spaces”, Int. Math. Res. Not. IMRN, 1998:9 (1998), 463–487
  25. X. Tolsa, Analytic capacity, the Cauchy transform, and non-homogeneous Calderon–Zygmund theory, Progr. Math., 307, Birkhäuser/Springer, Cham, 2014, xiv+396 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Paramonov P.V.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».