Quasi-polynomial mappings with constant Jacobian
- Authors: Pinchuk S.I.1
-
Affiliations:
- Indiana University
- Issue: Vol 85, No 3 (2021)
- Pages: 178-190
- Section: Articles
- URL: https://journal-vniispk.ru/1607-0046/article/view/133865
- DOI: https://doi.org/10.4213/im9017
- ID: 133865
Cite item
Abstract
References
- S. S. Abhyankar, Lectures on expansion techniques in algebraic geometry, Tata Inst. Fund. Res. Lectures on Math. and Phys., 57, Tata Inst. Fund. Res., Bombay, 1977, iv+168 pp.
- H. Bass, E. H. Connel, D. Wright, “The Jacobian conjecture: reduction of degree and formal expansion of the inverse”, Bull. Amer. Math. Soc. (N.S.), 7:2 (1982), 287–330
- A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progr. Math., 190, Birkhäuser Verlag, Basel, 2000, xviii+329 pp.
- E. Formanek, “Theorems of W. W. Stothers and the Jacobian conjecture in two variables”, Proc. Amer. Math. Soc., 139:4 (2011), 1137–1140
- C. Valqui, J. A. Guccione, J. J. Guccione, “On the shape of possible counterexamples to the Jacobian conjecture”, J. Algebra, 471 (2017), 13–74
- L. Makar-Limanov, On the Newton polygon of a Jacobian mate, MPIM Preprint Series, No. 2013-53, Max-Planck-Institut für Mathematik, Bonn, 2013, 14 pp.
- L. Makar-Limanov, On the Newton polytope of a Jacobian pair, MPIM Preprint Series, No. 2014-30, Max-Planck-Institut für Mathematik, Bonn, 2014, 20 pp.
- T. T. Moh, “On the Jacobian conjecture and the configurations of roots”, J. Reine Angew. Math., 1983:340 (1983), 140–212
- J. Dixmier, “Sur les algèbres de Weyl”, Bull. Soc. Math. France, 96 (1968), 209–242
- A. Joseph, “The Weyl algebra – semisimple and nilpotent elements”, Amer. J. Math., 97:3 (1975), 597–615
- B. J. Birch, S. Chowla, M. Hall, Jr., A. Schinzel, “On the difference $x^3-y^2$”, Norske Vid. Selsk. Forh. (Trondheim), 38 (1965), 65–69
- H. Davenport, “On $f^3(t)-g^2(t)$”, Norske Vid. Selsk. Forh. (Trondheim), 38 (1965), 86–87
- W. W. Stothers, “Polynomial identities and Hauptmoduln”, Quart. J. Math. Oxford Ser. (2), 32:127 (1981), 349–370
- U. Zannier, “On Davenport's bound for the degree of $f^3-g^2$ and Riemann's existence theorem”, Acta Arith., 71:2 (1995), 107–137
- F. Pakovich, A. K. Zvonkin, “Minimum degree of the difference of two polynomials over $mathbb Q$, and weighted plane trees”, Selecta Math. (N.S.), 20:4 (2014), 1003–1065
Supplementary files
