When is the search of relatively maximal subgroups reduced to quotient groups?

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $\mathfrak{X}$ be a class finite groups closed under taking subgroups, homomorphic images, and extensions, andlet $\mathrm{k}_{\mathfrak{X}}(G)$ be the number of conjugacy classes $\mathfrak{X}$-maximal subgroups of a finite group $G$.The natural problem calling for a description, up to conjugacy, ofthe $\mathfrak{X}$-maximal subgroups of a given finite group is not inductive.In particular, generally speaking, the image of an $\mathfrak{X}$-maximalsubgroup is not $\mathfrak{X}$-maximal in the image of a homomorphism.Nevertheless, there exist group homomorphisms that preserve the number of conjugacy classes of maximal$\mathfrak{X}$-subgroups (for example, the homomorphisms whose kernels are $\mathfrak{X}$-groups).Under such homomorphisms, the image of an $\mathfrak{X}$-maximal subgroup is always $\mathfrak{X}$-maximal,and, moreover, there is a natural bijection between the conjugacy classesof $\mathfrak{X}$-maximal subgroups of the image and preimage.In the present paper, all such homomorphisms arecompletely described.More precisely, it is shown that, for a homomorphism $\phi$from a group $G$, the equality $\mathrm{k}_{\mathfrak{X}}(G)=\mathrm{k}_{\mathfrak{X}}(\operatorname{im} \phi)$holds if and only if $\mathrm{k}_{\mathfrak{X}}(\ker \phi)=1$,which in turn is equivalent to the fact that the composition factors of the kernel of $\phi$ lie in an explicitly given list.

About the authors

Wen Bin Guo

School of Science, Hainan University; University of Science and Technology of China

Email: wguo@ustc.edu.cn
Doctor of physico-mathematical sciences

Danila Olegovich Revin

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences; N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: revin@math.nsc.ru
Doctor of physico-mathematical sciences, no status

References

  1. H. Wielandt, “On the structure of composite groups”, Proceedings of the international conference on the theory of groups (Austral. Nat. Univ., Canberra, 1965), Gordon and Breach Science Publishers Inc., New York, 1967, 379–388
  2. H. Wielandt, “Zusammengesetzte Gruppen endlicher Ordnung”, Lecture notes, Math. Inst. Univ. Tübingen, 1963/64, Mathematische Werke {/} Mathematical works, v. 1, Group theory, Walter de Gruyter & Co., Berlin, 1994, 607–655
  3. H. Wielandt, “Zusammengesetzte Gruppen: Hölder Programm heute”, The Santa Cruz conference on finite groups (Univ. California, Santa Cruz, CA, 1979), Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, RI, 1980, 161–173
  4. Wenbin Guo, D. O. Revin, E. P. Vdovin, “The reduction theorem for relatively maximal subgroups”, Bull. Math. Sci., 12:1 (2022), 2150001, 47 pp.
  5. M. L. Sylow, “Theorèmes sur les groupes de substitutions”, Math. Ann., 5:4 (1872), 584–594
  6. P. Hall, “A note on soluble groups”, J. London Math. Soc., 3:2 (1928), 98–105
  7. С. А. Чунихин, “О $Pi$-отделимых группах”, Докл. АН СССР, 59:3 (1948), 443–445
  8. С. А. Чунихин, “О $Pi$-свойствах конечных групп”, Матем. сб., 25(67):3 (1949), 321–346
  9. С. А. Чунихин, “О существовании и сопряженности подгрупп у конечной группы”, Матем. сб., 33(75):1 (1953), 111–132
  10. С. А. Чунихин, “О некоторых направлениях в развитии теории конечных групп за последние годы”, УМН, 16:4(100) (1961), 31–50
  11. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, With comput. assistance from J. G. Thackray, Oxford Univ. Press, Eynsham, 1985, xxxiv+252 pp.
  12. Wenbin Guo, D. O. Revin, “Pronormality and submaximal $mathfrak{X}$-subgroups in finite groups”, Commun. Math. Stat., 6:3 (2018), 289–317
  13. Е. П. Вдовин, Д. О. Ревин, “Теоремы силовского типа”, УМН, 66:5(401) (2011), 3–46
  14. В. Го, Д. О. Ревин, “О связи между сопряжeнностью максимальных и субмаксимальных $mathfrak X$-подгрупп”, Алгебра и логика, 57:3 (2018), 261–278
  15. K. Doerk, T. O. Hawkes, Finite soluble groups, De Gruyter Exp. Math., 4, Walter de Gruyter & Co., Berlin, 1992, xiv+891 pp.
  16. Е. П. Вдовин, Н. Ч. Манзаева, Д. О. Ревин, “О наследуемости $pi$-теоремы Силова подгруппами”, Матем. сб., 211:3 (2020), 3–31
  17. С. Ленг, Алгебра, Мир, М., 1968, 564 с.
  18. J. N. Bray, D. F. Holt, C. M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lecture Note Ser., 407, Cambridge Univ. Press, Cambridge, 2013, xiv+438 pp.
  19. M. Suzuki, Group theory I, Transl. from the Japan., Grundlehren Math. Wiss., 247, Springer-Verlag, Berlin–New York, 1982, xiv+434 pp.
  20. M. Suzuki, Group theory II, Transl. from the Japan., Grundlehren Math. Wiss., 248, Springer-Verlag, New York, 1986, x+621 pp.
  21. P. Hall, “Theorems like Sylow's”, Proc. London Math. Soc. (3), 6:2 (1956), 286–304
  22. B. Huppert, Endliche Gruppen I, Grundlehren Math. Wiss., 134, Springer-Verlag, Berlin–New York, 1967, xii+793 pp.
  23. D. O. Revin, E. P. Vdovin, “On the number of classes of conjugate Hall subgroups in finite simple groups”, J. Algebra, 324:12 (2010), 3614–3652
  24. В. А. Ведерников, “Конечные группы с холловыми $pi$-подгруппами”, Матем. сб., 203:3 (2012), 23–48
  25. A. A. Buturlakin, A. P. Khramova, “A criterion for the existence of a solvable $pi$-Hall subgroup in a finite group”, Comm. Algebra, 48:3 (2020), 1305–1313

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Guo W.B., Revin D.O.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).