A solution to the multidimensional additive homological equation
- Authors: Ber A.F.1, Borst M.2, Borst S.3, Sukochev F.A.4
-
Affiliations:
- National University of Uzbekistan named after M. Ulugbek, Faculty of Mathematics and Mechanics
- Delft University of Technology
- Centrum voor Wiskunde en Informatica
- University of New South Wales, School of Mathematics and Statistics
- Issue: Vol 87, No 2 (2023)
- Pages: 3-55
- Section: Articles
- URL: https://journal-vniispk.ru/1607-0046/article/view/133896
- DOI: https://doi.org/10.4213/im9319
- ID: 133896
Cite item
Abstract
About the authors
Aleksei Feliksovich Ber
National University of Uzbekistan named after M. Ulugbek, Faculty of Mathematics and Mechanics
Email: ber@ucd.uz
Candidate of physico-mathematical sciences, Senior Researcher
Matthijs Borst
Delft University of Technology
Email: m.j.borst@outlook.com
Sander Borst
Centrum voor Wiskunde en Informatica
Email: sander.borst@cwi.nl
Fedor Anatol'evich Sukochev
University of New South Wales, School of Mathematics and Statistics
Email: f.sukochev@unsw.edu.au
Candidate of physico-mathematical sciences, Professor
References
- Д. В. Аносов, “Об аддитивном функциональном гомологическом уравнении, связанном с эргодическим поворотом окружности”, Изв. АН СССР. Сер. матем., 37:6 (1973), 1259–1274
- А. Н. Колмогоров, “О динамических системах с интегральным инвариантом на торе”, Докл. АН СССР, 93:5 (1953), 763–766
- J. Bourgain, “Translation invariant forms on $L^p(G)$ ($1
- F. E. Browder, “On the iteration of transformations in noncompact minimal dynamical systems”, Proc. Amer. Math. Soc., 9:5 (1958), 773–780
- T. Adams, J. Rosenblatt, “Joint coboundaries”, Dynamical systems, ergodic theory, and probability: in memory of Kolya Chernov, Contemp. Math., 698, Amer. Math. Soc., Providence, RI, 2017, 5–33
- T. Adams, J. Rosenblatt, Existence and non-existence of solutions to the coboundary equation for measure preserving systems
- A. Ber, M. Borst, F. Sukochev, “Full proof of Kwapien's theorem on representing bounded mean zero functions on $[0,1]$”, Studia Math., 259:3 (2021), 241–270
- S. Kwapien, “Linear functionals invariant under measure preserving transformations”, Math. Nachr., 119:1 (1984), 175–179
- T. Figiel, N. Kalton, “Symmetric linear functionals on function spaces”, Function spaces, interpolation theory and related topics (Lund, 2000), de Gruyter, Berlin, 2002, 311–332
- S. Lord, F. Sukochev, D. Zanin, Singular traces. Theory and applications, De Gruyter Stud. Math., 46, De Gruyter, Berlin, 2013, xvi+452 pp.
- M. I. Kadets, V. M. Kadets, Series in Banach spaces. Conditional and unconditional convergence, Oper. Theory Adv. Appl., 94, Birkhäuser Verlag, Basel, 1997, viii+156 pp.
- В. И. Богачев, Основы теории меры, т. 1, 2, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2003, 544 с., 576 с.
- J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp.
- E. Steinitz, “Bedingt konvergente Reihen und konvexe Systeme”, J. Reine Angew. Math., 1913:143 (1913), 128–176
- В. С. Гринберг, С. В. Севастьянов, “О величине константы Штейница”, Функц. анализ и его прил., 14:2 (1980), 56–57
- W. Banaszczyk, “The Steinitz constant of the plane”, J. Reine Angew. Math., 1987:373 (1987), 218–220
- W. Banaszczyk, “A note on the Steinitz constant of the Euclidean plane”, C. R. Math. Rep. Acad. Sci. Canada, 12:4 (1990), 97–102
- W. Banaszczyk, “The Steinitz theorem on rearrangement of series for nuclear spaces”, J. Reine Angew. Math., 1990:403 (1990), 187–200
- I. Barany, V. S. Grinberg, “On some combinatorial questions in finite-dimensional spaces”, Linear Algebra Appl., 41:3 (1981), 1–9
- B. Simon, Convexity. An analytic viewpoint, Cambridge Tracts in Math., 187, Cambridge Univ. Press, Cambridge, 2011, x+345 pp.
- J. B. Conway, A course in functional analysis, Grad. Texts in Math., 96, 2nd ed., Springer-Verlag, New York, 1990, xvi+399 pp.
- G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, 6th ed., Oxford Univ. Press, Oxford, 2008, xxii+621 pp.
Supplementary files
