On the transference principle and Nesterenko's linear independence criterion

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We consider the problem of simultaneous approximation of real numbers $\theta_1,…,\theta_n$ by rationals and the dual problem of approximating zero by the values of the linear form $x_0+\theta_1x_1+…+\theta_nx_n$ at integer points. In this setting we analyse two transference inequalities obtained by Schmidt and Summerer. We present a rather simple geometric observation which proves their result. We also derive several previously unknown corollaries. In particular, we show that, together with German's inequalities for uniform exponents, Schmidt and Summerer's inequalities imply the inequalities by Bugeaud and Laurent and “one half” of the inequalities by Marnat and Moshchevitin. Moreover, we show that our main construction provides a rather simple proof of Nesterenko's linear independencecriterion.Bibliography: 19 titles.

Об авторах

Олег Николаевич Герман

Национальный исследовательский университет "Высшая школа экономики"; Московский центр фундаментальной и прикладной математики

Email: german.oleg@gmail.com
доктор физико-математических наук, без звания

Николай Германович Мощевитин

Национальный исследовательский университет "Высшая школа экономики"; Московский центр фундаментальной и прикладной математики

Email: moshchevitin@rambler.ru
доктор физико-математических наук, профессор

Список литературы

  1. Ю. В. Нестеренко, “О линейной независимости чисел”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1985, № 1, 46–49
  2. A. Khintchine, “Über eine Klasse linearer Diophantischer Approximationen”, Rend. Circ. Mat. Palermo, 50 (1926), 170–195
  3. V. Jarnik, “Zum Khintchineschen “Übertragungssatz””, Trav. Inst. Math. Tbilissi, 3 (1938), 193–216
  4. Y. Bugeaud, M. Laurent, “Exponents of Diophantine approximation”, Diophantine geometry, CRM Series, 4, Ed. Norm., Pisa, 2007, 101–121
  5. Y. Bugeaud, M. Laurent, “On transfer inequalities in Diophantine approximation. II”, Math. Z., 265:2 (2010), 249–262
  6. O. N. German, “Intermediate Diophantine exponents and parametric geometry of numbers”, Acta Arith., 154:1 (2012), 79–101
  7. O. N. German, “On Diophantine exponents and Khintchine's transference principle”, Mosc. J. Comb. Number Theory, 2:2 (2012), 22–51
  8. W. M. Schmidt, L. Summerer, “Diophantine approximation and parametric geometry of numbers”, Monatsh. Math., 169:1 (2013), 51–104
  9. O. N. German, N. G. Moshchevitin, “A simple proof of Schmidt–Summerer's inequality”, Monatsh. Math., 170:3-4 (2013), 361–370
  10. V. Jarnik, “Une remarque sur les approximations diophantiennes lineaires”, Acta Sci. Math. (Szeged), 12 B (1950), 82–86
  11. V. Jarnik, “Contribution à la theorie des approximations diophantiennes lineaires et homogènes”, Czechoslovak Math. J., 4:79 (1954), 330–353
  12. A. Marnat, N. G. Moshchevitin, “An optimal bound for the ratio between ordinary and uniform exponents of Diophantine approximation”, Mathematika, 66:3 (2020), 818–854
  13. Ngoc Ai Van Nguyen, A. Poëls, D. Roy, “A transference principle for simultaneous rational approximation”, J. Theor. Nombres Bordeaux, 32:2 (2020), 387–402
  14. J. Schleischitz, “On geometry of numbers and uniform rational approximation to the Veronese curve”, Period. Math. Hung., 83:2 (2021), 233–249
  15. J. Schleischitz, “Optimality of two inequalities for exponents of Diophantine approximation”, J. Number Theory, 244 (2023), 169–203
  16. D. Kleinbock, N. Moshchevitin, B. Weiss, “Singular vectors on manifolds and fractals”, Israel J. Math., 245:2 (2021), 589–613
  17. S. Fischler, W. Zudilin, “A refinement of Nesterenko's linear independence criterion with applications to zeta values”, Math. Ann., 347:4 (2010), 739–763
  18. A. Chantanasiri, “On the criteria for linear independence of Nesterenko, Fischler and Zudilin”, Chamchuri J. Math., 2:1 (2010), 31–46
  19. S. Fischler, T. Rivoal, “Irrationality exponent and rational approximations with prescribed growth”, Proc. Amer. Math. Soc., 138:3 (2010), 799–808

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Герман О.Н., Мощевитин Н.Г., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).