Об одном классе квазилинейных уравнений эллиптического типа с разрывными нелинейностями

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В ограниченной области $\Omega\subset \mathbb{R}^n$ исследуется класс квазилинейных граничных задач эллиптического типа с параметром и разрывной нелинейностью. Рассматриваемый класс задач включает задачу Х. Дж. Купера о нагреве проводника в однородном электрическом поле. Топологическим методом устанавливается существование континуума обобщенных положительных решений из соболевского пространства $W_p^2(\Omega)$\enskip ($p>n$), соединяющего $(0,0)$ с $\infty$, в пространстве $\mathbb R\times C^{1,\alpha}(\overline\Omega)$, $\alpha\in (0,(p-n)/p)$. Приводится достаточное условие полуправильности обобщенных решений изучаемой задачи. По сравнению с работами Х. Дж. Купера и К.-Ч. Чанга ослаблены ограничения на разрывную нелинейность.Библиография: 26 наименований.

Об авторах

Вячеслав Николаевич Павленко

Челябинский государственный университет

Email: pavlenko-vn@yandex.ru
доктор физико-математических наук, профессор

Дмитрий Константинович Потапов

Санкт-Петербургский государственный университет

Email: d.potapov@spbu.ru
кандидат физико-математических наук, доцент

Список литературы

  1. Д. Гилбарг, Н. Трудингер, Эллиптические дифференциальные уравнения с частными производными второго порядка, Наука, М., 1989, 464 с.
  2. М. А. Красносельский, А. В. Покровский, Системы с гистерезисом, Наука, М., 1983, 272 с.
  3. H. J. Kuiper, “On positive solutions of nonlinear elliptic eigenvalue problems”, Rend. Circ. Mat. Palermo (2), 20:2-3 (1971), 113–138
  4. М. А. Красносельский, А. В. Покровский, “Правильные решения уравнений с разрывными нелинейностями”, Докл. АН СССР, 226:3 (1976), 506–509
  5. В. Н. Павленко, Д. К. Потапов, “Существование полуправильных решений эллиптических спектральных задач с разрывными нелинейностями”, Матем. сб., 206:9 (2015), 121–138
  6. В. Н. Павленко, Д. К. Потапов, “Существование решений невариационной эллиптической краевой задачи с параметром и разрывной нелинейностью”, Матем. тр., 19:1 (2016), 91–105
  7. В. Н. Павленко, Д. К. Потапов, “Существование двух нетривиальных решений в задачах на собственные значения для уравнений с разрывными правыми частями при достаточно больших значениях спектрального параметра”, Матем. сб., 208:1 (2017), 165–182
  8. В. Н. Павленко, Д. К. Потапов, “Существование трех нетривиальных решений эллиптической краевой задачи с разрывной нелинейностью в случае сильного резонанса”, Матем. заметки, 101:2 (2017), 247–261
  9. В. Н. Павленко, Д. К. Потапов, “Об оценках спектрального параметра эллиптических краевых задач с разрывными нелинейностями”, Сиб. матем. журн., 58:2 (2017), 375–385
  10. В. Н. Павленко, Д. К. Потапов, “Задача Эленбааса об электрической дуге”, Матем. заметки, 103:1 (2018), 92–100
  11. В. Н. Павленко, Д. К. Потапов, “О свойствах спектра эллиптической краевой задачи с параметром и разрывной нелинейностью”, Матем. сб., 210:7 (2019), 145–170
  12. В. Н. Павленко, Д. К. Потапов, “Об одном классе эллиптических краевых задач с параметром и разрывной нелинейностью”, Изв. РАН. Сер. матем., 84:3 (2020), 168–184
  13. В. Н. Павленко, Д. К. Потапов, “О существовании трех нетривиальных решений резонансной эллиптической краевой задачи с разрывной нелинейностью”, Дифференц. уравнения, 56:7 (2020), 861–871
  14. В. Н. Павленко, Д. К. Потапов, “Положительные решения суперлинейных эллиптических задач с разрывными нелинейностями”, Изв. РАН. Сер. матем., 85:2 (2021), 95–112
  15. В. Н. Павленко, Д. К. Потапов, “Вариационный метод для эллиптических систем с разрывными нелинейностями”, Матем. сб., 212:5 (2021), 133–152
  16. В. Н. Павленко, Д. К. Потапов, “Существование полуправильных решений эллиптических систем с разрывными нелинейностями”, Матем. заметки, 110:2 (2021), 239–257
  17. H. J. Kuiper, “Eigenvalue problems for noncontinuous operators associated with quasilinear elliptic equations”, Arch. Ration. Mech. Anal., 53:2 (1974), 178–186
  18. И. В. Шрагин, “Условия измеримости суперпозиций”, Докл. АН СССР, 197:2 (1971), 295–298
  19. М. А. Красносельский, Положительные решения операторных уравнений, Физматгиз, М., 1962, 394 с.
  20. Kung-ching Chang, “Free boundary problems and the set-valued mappings”, J. Differential Equations, 49:1 (1983), 1–28
  21. С. Л. Соболев, Некоторые применения функционального анализа в математической физике, 3-е изд., перераб. и доп., Наука, М., 1988, 334 с.
  22. О. А. Ладыженская, Н. Н. Уральцева, Линейные и квазилинейные уравнения эллиптического типа, 2-е изд., Наука, М., 1973, 576 с.
  23. В. Н. Павленко, “Управление сингулярными распределенными системами параболического типа с разрывными нелинейностями”, Укр. матем. журн., 46:6 (1994), 729–736
  24. Ю. Г. Борисович, Б. Д. Гельман, А. Д. Мышкис, В. В. Обуховский, Введение в теорию многозначных отображений и дифференциальных включений, 2-е изд., испр. и доп., Либроком, М., 2011, 224 с.
  25. H. J. Kuiper, W. R. Derrick, “Nonlinear ordinary and functional Sturm–Liouville problems”, Indiana Univ. Math. J., 25:2 (1976), 179–190
  26. J. T. Schwartz, Nonlinear functional analysis, Notes on Mathematics and its Applications, Gordon and Breach Science Publishers, New York–London–Paris, 1969, vii+236 pp.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Павленко В.Н., Потапов Д.К., 2022

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).