Hardy type inequalities for one weight function and their applications

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

New one-dimensional Hardy-type inequalities for a weight function of the form $x^\alpha(2-x)^\beta$ for positive and negative values of the parameters $\alpha$ and $\beta$ are put forward.In some cases, the constants in the resulting one-dimensional inequalities are sharp. We use one-dimensional inequalities with additional terms to establish multivariate inequalities with weight functions depending on the mean distance function or the distance function from the boundary of a domain. Spatial inequalities are proved in arbitrary domains, in Davies-regular domains, in domains satisfying the cone condition, in $\lambda$-close to convex domains,and in convex domains. The constant in the additional term in the spatial inequalities depends on the volume orthe diameter of the domain. As a consequence of these multivariate inequalities,estimates for the first eigenvalue of the Laplacian under the Dirichlet boundary conditions in various classes of domains are established. We also use one-dimensional inequalities to obtain new classes of meromorphic univalent functions in simply connected domains. Namely,Nehari–Pokornii type sufficient conditions for univalence are obtained.

Авторлар туралы

Ramil' Nasibullin

Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University

Email: NasibullinRamil@gmail.com
Candidate of physico-mathematical sciences, no status

Әдебиет тізімі

  1. A. A. Balinsky, W. D. Evans, R. T. Lewis, The analysis and geometry of Hardy's inequality, Universitext, Springer, Cham, 2015, xv+263 pp.
  2. Ф. Г. Авхадиев, “Свойства и применения функции расстояния открытого подмножества в евклидовом пространстве”, Изв. вузов. Матем., 2020, № 4, 87–92
  3. H. Brezis, M. Marcus, “Hardy's inequalities revisited”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:1-2 (1997), 217–237
  4. T. Matskewich, P. E. Sobolevskii, “The best possible constant in generalized Hardy's inequality for convex domain in ${R}^n$”, Nonlinear Anal., 28:9 (1997), 1601–1610
  5. Ф. Г. Авхадиев, “Геометрическое описание областей, для которых константа Харди равна $1/4$”, Изв. РАН. Сер. матем., 78:5 (2014), 3–26
  6. M. Marcus, V. J. Mizel, Y. Pinchover, “On the best constant for Hardy's inequality in $mathbb{R}^n$”, Trans. Amer. Math. Soc., 350:8 (1998), 3237–3255
  7. E. B. Davies, “The Hardy constant”, Quart. J. Math. Oxford Ser. (2), 46:4 (1995), 417–431
  8. C. Bandle, Isoperimetric inequalities and applications, Monogr. Stud. Math., 7, Pitman (Advanced Publishing Program), Boston, Mass.–London, 1980, x+228 pp.
  9. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, “A geometrical version of Hardy's inequality”, J. Funct. Anal., 189:2 (2002), 539–548
  10. W. D. Evans, R. T. Lewis, “Hardy and Rellich inequalities with remainders”, J. Math. Inequal., 1:4 (2007), 473–490
  11. F. G. Avkhadiev, “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31
  12. Ф. Г. Авхадиев, “Неравенства типа Харди в плоских и пространственных открытых множествах”, Функциональные пространства, теория приближений, нелинейный анализ, Сборник статей, Труды МИАН, 255, Наука, МАИК «Наука/Интерпериодика», М., 2006, 8–18
  13. S. Filippas, V. Maz'ya, A. Tertikas, “On a question of Brezis and Marcus”, Calc. Var. Partial Differential Equations, 25:4 (2006), 491–501
  14. F. G. Avkhadiev, K.-J. Wirths, “Unified Poincare and Hardy inequalities with sharp constants for convex domains”, ZAMM Z. Angew. Math. Mech., 87:8-9 (2007), 632–642
  15. F. G. Avkhadiev, K.-J. Wirths, “Sharp Hardy-type inequalities with Lamb's constant”, Bull. Belg. Math. Soc. Simon Stevin, 18:4 (2011), 723–736
  16. Ф. Г. Авхадиев, Р. Г. Насибуллин, “Неравенства типа Харди в произвольных областях с конечным внутренним радиусом”, Сиб. матем. журн., 55:2 (2014), 239–250
  17. J. Hersch, “Sur la frequence fondamentale d'une membrane vibrante: evaluations par defaut et principe de maximum”, Z. Angew. Math. Phys., 11 (1960), 387–413
  18. В. И. Левин, “О неравенствах. II. Об одном классе интегральных неравенств”, Матем. сб., 4(46):2 (1938), 309–324
  19. В. Г. Мазья, Пространства С. Л. Соболева, Изд-во Ленингр. ун-та, Л., 1985, 416 с.
  20. J. Tidblom, “A geometrical version of Hardy's inequality for $mathring W^{1,p}(Omega)$”, Proc. Amer. Math. Soc., 132:8 (2004), 2265–2271
  21. Z. Nehari, “The Schwarzian derivative and schlicht functions”, Bull. Amer. Math. Soc., 55:6 (1949), 545–551
  22. Ф. Г. Авхадиев, Л. А. Аксентьев, А. М. Елизаров, “Достаточные условия конечнолистности аналитических функций и их приложения”, Итоги науки и техн. Сер. Матем. анал., 25, ВИНИТИ, М., 1987, 3–121
  23. Ф. Г. Авхадиев, Л. А. Аксентьев, “Достижения и проблемы в достаточных условиях конечнолистности аналитических функций”, Изв. вузов. Матем., 1986, № 10, 3–16
  24. Ф. Г. Авхадиев, “Некоторые достаточные условия однолистности аналитических функций”, Тр. сем. по краев. задачам, 9, Изд-во Казан. ун-та, Казань, 1972, 3–11
  25. Ф. Г. Авхадиев, Конформные отображения и краевые задачи, 2-е изд., перераб. и доп., Изд-во Казан. ун-та, Казань, 2019, 412 с.
  26. S. Yamashita, “Inequalities for the Schwarzian derivative”, Indiana Univ. Math. J., 28:1 (1979), 131–135
  27. Дж. Н. Ватсон, Теория бесселевых функций, т. 1, 2, ИЛ, М., 1949, 798 с., 220 с.
  28. P. R. Beesack, K. M. Das, “Extensions of Opial's inequality”, Pacific J. Math., 26:2 (1968), 215–232
  29. R. C. Brown, D. B. Hinton, “Opial's inequality and oscillation of 2nd order equations”, Proc. Amer. Math. Soc., 125:4 (1997), 1123–1129
  30. R. Nasibullin, “A geometrical version of Hardy–Rellich type inequalities”, Math. Slovaca, 69:4 (2019), 785–800
  31. E. B. Davies, Spectral theory and differential operators, Cambridge Stud. Adv. Math., 42, Cambridge Univ.Press., Cambridge, 1995, x+182 pp.
  32. А. М. Тухватуллина, “Неравенства типа Харди для специального семейства невыпуклых областей”, Учен. зап. Казан. ун-та. Сер. Физ.-матем. науки, 153, № 1, Изд-во Казан. ун-та, Казань, 2011, 211–220
  33. Р. Г. Насибуллин, А. М. Тухватуллина, “Неравенства типа Харди с логарифмическими и степенными весами для специального семейства невыпуклых областей”, Уфимск. матем. журн., 5:2 (2013), 43–55
  34. Ф. Г. Авхадиев, “Интегральные неравенства Харди и Реллиха в областях, удовлетворяющих условию внешней сферы”, Алгебра и анализ, 30:2 (2018), 18–44
  35. В. В. Покорный, “О некоторых достаточных условиях однолистности”, Докл. АН СССР, 79:5 (1951), 743–746
  36. Р. Г. Насибуллин, “Неравенства Харди для веса Якоби и их применения”, Сиб. матем. журн., 63:6 (2022), 1313–1333

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Nasibullin R.G., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».