Log adjunction: moduli part

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Upper moduli part of adjunction is introduced and its basic property are discussed. The moduli part is b-Cartier in the case of rational multiplicities and is b-nef in the maximal case.Bibliography: 17 titles.

About the authors

Vyacheslav Vladimirovich Shokurov

Johns Hopkins University; Steklov Mathematical Institute of Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: shokurov@mi-ras.ru
Doctor of physico-mathematical sciences, Professor

References

  1. F. Ambro, P. Cascini, V. Shokurov, C. Spicer, Positivity of the moduli part
  2. F. Ambro, “Shokurov's boundary property”, J. Differential Geom., 67:2 (2004), 229–255
  3. V. V. Shokurov, Log adjunction: effectiveness and positivity
  4. В. А. Исковских, “b-Дивизоры и функциональные алгебры по Шокурову”, Бирациональная геометрия: линейные системы и конечно порожденные алгебры, Сборник статей, Труды МИАН, 240, Наука, МАИК «Наука/Интерпериодика», М., 2003, 8–20
  5. V. V. Shokurov, “Prelimiting flips”, Бирациональная геометрия: линейные системы и конечно порожденные алгебры, Сборник статей, Труды МИАН, 240, Наука, МАИК «Наука/Интерпериодика», М., 2003, 82–219
  6. V. V. Shokurov, Existence and boundedness of $n$-complements
  7. Yu. G. Prokhorov, V. V. Shokurov, “Towards the second main theorem on complements”, J. Algebraic Geom., 18:1 (2009), 151–199
  8. Y. Kawamata, “Subadjunction of log canonical divisors for a subvariety of codimension 2”, Birational algebraic geometry (Baltimore, MD, 1996), Contemp. Math., 207, Amer. Math. Soc., Providence, RI, 1997, 79–88
  9. F. Ambro, The adjunction conjecture and its applications, PhD thesis, The Johns Hopkins Univ., Ann Arbor, MI, 1999, 54 pp.
  10. M. Raynaud, L. Gruson, “Critères de platitude et de projectivite. Techniques de “platification” d'un module”, Première partie: Platitude en geometrie algebrique, Invent. Math., 13 (1971), 1–52
  11. A. J. de Jong, “Family of curves and alterations”, Ann. Inst. Fourier (Grenoble), 47:2 (1997), 599–621
  12. D. Abramovich, K. Karu, “Weak semistable reduction in characteristic $0$”, Invent. Math., 139:2 (2000), 241–273
  13. C. Birkar, De-Qi Zhang, “Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs”, Publ. Math. Inst. Hautes Etudes Sci., 123 (2016), 283–331
  14. C. D. Hacon, J. McKernan, Chenyang Xu, “ACC for log canonical thresholds”, Ann. of Math. (2), 180:2 (2014), 523–571
  15. S. Keel, “Basepoint freeness for nef and big line bundles in positive characteristic”, Ann. of Math. (2), 149:1 (1999), 253–286
  16. F. Ambro, Fibered log varieties, July 27 2003
  17. V. V. Shokurov, Sung Rak Choi, “Geography of log models: theory and applications”, Cent. Eur. J. Math., 9:3 (2011), 489–534

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Shokurov V.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).