Вычисление гиперэллиптических систем последовательностей ранга $4$

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Выводятся формулы для последовательностей комплексных чисел, удовлетворяющие функциональным соотношениям билинейного типа. Полученные результаты используются для описания всех целых 1-периодических функций $f,g\colon \mathbb{C}\to\mathbb{C}$, удовлетворяющих вместе с некоторыми $\phi_j,\psi_j\colon \mathbb{C}\to\mathbb{C}$ разложению $f(x+y)g(x-y)=\phi_1(x)\psi_1(y)+…+\phi_4(x)\psi_4(y)$.Библиография: 32 наименования.

Об авторах

Андрей Анатольевич Илларионов

Национальный исследовательский университет "Высшая школа экономики"

Email: illar_a@list.ru
доктор физико-математических наук, без звания

Список литературы

  1. M. Ward, “Memoir on elliptic divisibility sequences”, Amer. J. Math., 70 (1948), 31–74
  2. М. О. Авдеева, В. А. Быковский, “Гиперэллиптические системы последовательностей и функций”, Дальневост. матем. журн., 16:2 (2016), 115–122
  3. А. А. Илларионов, “Гиперэллиптические системы последовательностей ранга 4”, Матем. сб., 210:9 (2019), 59–88
  4. R. M. Robinson, “Periodicity of Somos sequences”, Proc. Amer. Math. Soc., 116:3 (1992), 613–619
  5. R. Shipsey, Elliptic divisibility sequences, PhD thesis, Goldsmiths, Univ. London, London, 2000, 118 pp.
  6. C. S. Swart, Elliptic curves and related sequences, PhD thesis, Royal Holloway, Univ. London, London, 2003, 223 pp.
  7. A. N. W. Hone, “Elliptic curves and quadratic reccurence sequences”, Bull. London Math. Soc., 37:2 (2005), 161–171
  8. A. J. van der Poorten, C. S. Swart, “Recurrence relations for elliptic sequences: every Somos 4 is a Somos $k$”, Bull. London Math. Soc., 38:4 (2006), 546–554
  9. A. J. van der Poorten, “Hyperelliptic curves, continued fractions, and Somos sequences”, Dynamics and stochastics, IMS Lecture Notes Monogr. Ser., 48, Inst. Math. Statist., Beachwood, OH, 2006, 212–224
  10. A. N. W. Hone, “Sigma function solution of the initial value problem for Somos 5 sequences”, Trans. Amer. Math. Soc., 359:10 (2007), 5019–5034
  11. A. N. W. Hone, C. Swart, “Integrality and the Laurent phenomenon for Somos 4 and Somos 5 sequences”, Math. Proc. Cambridge Philos. Soc., 145:1 (2008), 65–85
  12. A. N. W. Hone, “Analytic solutions and integrability for bilinear recurrences of order six”, Appl. Anal., 89:4 (2010), 473–492
  13. Y. N. Fedorov, A. N. W. Hone, “Sigma-function solution to the general Somos-6 recurrence via hyperelliptic Prym varieties”, J. Integrable Syst., 1:1 (2016), xyw012, 34 pp.
  14. В. А. Быковский, А. В. Устинов, “Сомос-4 и эллиптические системы последовательностей”, Докл. РАН, 471:1 (2016), 7–10
  15. R. Rochberg, L. A. Rubel, “A functional equation”, Indiana Univ. Math. J., 41:2 (1992), 363–376
  16. А. А. Илларионов, “Решение функциональных уравнений, связанных с эллиптическими функциями”, Аналитическая теория чисел, Сборник статей. К 80-летию со дня рождения Анатолия Алексеевича Карацубы, Труды МИАН, 299, МАИК “Наука/Интерпериодика”, М., 2017, 105–117
  17. В. М. Бухштабер, Д. В. Лейкин, “Трилинейные функциональные уравнения”, УМН, 60:2(362) (2005), 151–152
  18. В. М. Бухштабер, Д. В. Лейкин, “Законы сложения на якобианах плоских алгебраических кривых”, Нелинейная динамика, Сборник статей, Труды МИАН, 251, Наука, МАИК “Наука/Интерпериодика”, М., 2005, 54–126
  19. В. М. Бухштабер, И. М. Кричевер, “Интегрируемые уравнения, теоремы сложения и проблема Римана–Шоттки”, УМН, 61:1(367) (2006), 25–84
  20. В. А. Быковский, “Гиперквазимногочлены и их приложения”, Функц. анализ и его прил., 50:3 (2016), 34–46
  21. А. А. Илларионов, М. А. Романов, “Гиперквазимногочлены для тэта-функции”, Функц. анализ и его прил., 52:3 (2018), 84–87
  22. А. А. Илларионов, “О полилинейном функциональном уравнении”, Матем. заметки, 107:1 (2020), 59–73
  23. M. Bonk, “The addition theorem of Weierstrass's sigma function”, Math. Ann., 298:4 (1994), 591–610
  24. P. Sinopoulos, “Generalized sine equation. I”, Aequationes Math., 48:2-3 (1994), 171–193
  25. M. Bonk, “The characterization of theta functions by functional equations”, Abh. Math. Sem. Univ. Hamburg, 65 (1995), 29–55
  26. M. Bonk, “The addition formula for theta function”, Aequationes Math., 53:1-2 (1997), 54–72
  27. A. Jarai, W. Sander, “On the characterization of Weierstrass's sigma function”, Functional equations – results and advances, Adv. Math. (Dordr.), 3, Kluwer Acad. Publ., Dordrecht, 2002, 29–79
  28. А. А. Илларионов, “Функциональное уравнение и сигма-функция Вейерштрасса”, Функц. анализ и его прил., 50:4 (2016), 43–54
  29. А. А. Илларионов, “Решение функциональных уравнений, связанных с эллиптическими функциями. II”, Сиб. электрон. матем. изв., 16 (2019), 481–492
  30. T. Levi-Civita, “Sulle funzioni che ammettono una formula d'addizione del tipo $f(x+y) = sum_{i=1}^n X_i(x) Y_i(y)$”, Atti Accad. Naz. Lincei. Rend. (5), 22:2 (1913), 181–183
  31. А. О. Гельфонд, Исчисление конечных разностей, 2-е изд., Физматгиз, М., 1959, 400 с.
  32. Э. Т. Уиттекер, Дж. Н. Ватсон, Курс современного анализа, т. 2, 2-е изд., Физматгиз, М., 1963, 516 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Илларионов А.А., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».