Алгебраическая теорема де Рама и функция Бейкера–Ахиезера

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Для случая алгебраических кривых (компактных римановых поверхностей) показано, что группа когомологий де Рама $H^1_{\mathrm{dR}}(X,\mathbb{C})$ римановой поверхности $X$ рода $g$ имеет естественную структуру симплектического векторного пространства. Выбор неспециального эффективного дивизора $D$ степени $g$ на $X$ задает симплектический базис $H^1_{\mathrm{dR}}(X,\mathbb{C})$, состоящий из голоморфных дифференциалов и дифференциалов второго рода с полюсами в $D$. Этот результат, алгебраическая теорема де Рама, позволяет описать касательное пространство к многообразиям Пикара и Якоби римановой поверхности $X$ в терминах дифференциалов второго рода и определить естественные векторные поля на многообразии Якоби, отвечающие движению точек дивизора $D$. В терминах формализма Лакса на алгебраических кривых эти векторные поля соответствуют уравнениям Дубровина в теории интегрируемых систем, а функция Бейкера–Ахиезера естественным образом получаетсяинтегрированием вдоль интегральных кривых.Библиография: 14 наименований.

Об авторах

Игорь Моисеевич Кричевер

Columbia University; Сколковский институт науки и технологий, территория Инновационного Центра "Сколково"

Автор, ответственный за переписку.
Email: krichev@math.columbia.edu
ORCID iD: 0000-0002-7173-6272
Scopus Author ID: 6603725451
ResearcherId: AAJ-8553-2021
доктор физико-математических наук, профессор

Леон Арменович Тахтаджян

Department of Mathematics, Stony Brook University; Международный математический институт им. Л. Эйлера

Email: leontak@math.stonybrook.edu
доктор физико-математических наук, ведущий научный сотрудник

Список литературы

  1. W. V. D. Hodge, M. F. Atiyah, “Integrals of the second kind on an algebraic variety”, Ann. of Math. (2), 62 (1955), 56–91
  2. A. Grothendieck, “On the de Rham cohomology of algebraic varieties”, Inst. Hautes Etudes Sci. Publ. Math., 29 (1966), 95–103
  3. Ф. Гриффитс, Дж. Харрис, Принципы алгебраической геометрии, Мир, М., 1982, 864 с.
  4. Л. А. Тахтаджян, Л. Д. Фаддеев, Гамильтонов подход в теории солитонов, Наука, М., 1986, 528 с.
  5. I. Krichever, “Vector bundles and Lax equations on algebraic curves”, Comm. Math. Phys., 229:2 (2002), 229–269
  6. I. M. Krichever, “Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations”, Mosc. Math. J., 2:4 (2002), 717–752
  7. Б. А. Дубровин, “Периодическая задача для уравнения Кортевега–де Фриза в классе конечнозонных потенциалов”, Функц. анализ и его прил., 9:3 (1975), 41–51
  8. И. М. Кричевер, “Интегрирование нелинейных уравнений методами алгебраической геометрии”, Функц. анализ и его прил., 11:1 (1977), 15–31
  9. О. Форстер, Римановы поверхности, Мир, М., 1980, 248 с.
  10. К. Шевалле, Введение в теорию алгебраических функций от одной переменной, Физматгиз, М., 1959, 334 с.
  11. M. Eichler, Introduction to the theory of algebraic numbers and functions, Transl. from the German, Pure Appl. Math., 23, Academic Press, New York–London, 1966, xiv+324 pp.
  12. Л. А. Тахтаджян, “Квантовые теории поля на алгебраических кривых. I. Аддитивные бозоны”, Изв. РАН. Сер. матем., 77:2 (2013), 165–196
  13. K. Iwasawa, Algebraic functions, Transl. from the Japan., Transl. Math. Monogr., 118, Amer. Math. Soc., Providence, RI, 1993, xxii+287 pp.
  14. И. Кра, Автоморфные формы и клейновы группы, Мир, М., 1975, 296 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Кричевер И.М., Тахтаджян Л.А., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».