Критерий существования связного характеристического пространства орбит у градиентно-подобного диффеоморфизма поверхности

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Классический подход к изучению динамических систем состоит в представлении динамики системы в виде “источник–сток”, т. е. в выделении дуальной пары аттрактор–репеллер, которые являются притягивающими и отталкивающими множествами для всех остальных траекторий системы. Если удается выбрать дуальную пару аттрактор–репеллер так, что пространство орбит в их дополнении (характеристическое пространство орбит) является связным, то это создает предпосылки для нахождения полных топологических инвариантов динамической системы. На этом пути, в частности, получен целый ряд классификационных результатов для систем Морса–Смейла. Так, полная топологическая классификация 3-диффеоморфизмов Морса–Смейла существенно базируется на наличиисвязного характеристического пространства орбит, ассоциированного с выбором одномерной дуальной пары аттрактор–репеллер. Для диффеоморфизмов Морса–Смейла с гетероклиническими точками на поверхностях известны примеры, для которых все характеристические пространства орбит не связны. В настоящей работе доказан критерий существования связного характеристического пространства орбит для градиентно-подобных (без гетероклинических точек) диффеоморфизмов на поверхностях, из которого, в частности, следует, что связным характеристическим пространством обладает любой сохраняющий ориентацию диффеоморфизм. Тогда как на ориентируемой поверхности любого рода построен меняющий ориентацию градиентно-подобный диффеоморфизм, не обладающий связным характеристическим пространством. Градиентно-подобный диффеоморфизм без связного характеристического пространства построен также на неориентируемой поверхности любого рода.Библиография: 14 наименований.

Об авторах

Елена Вячеславовна Ноздринова

Национальный исследовательский университет – Высшая школа экономики в Нижнем Новгороде

ORCID iD: 0000-0001-5209-377X
кандидат физико-математических наук, без звания

Ольга Витальевна Починка

Национальный исследовательский университет – Высшая школа экономики в Нижнем Новгороде

Email: olga-pochinka@yandex.ru
ORCID iD: 0000-0002-6587-5305
доктор физико-математических наук, без звания

Екатерина Вадимовна Цаплина

Национальный исследовательский университет – Высшая школа экономики в Нижнем Новгороде

Список литературы

  1. В. З. Гринес, Е. В. Жужома, В. С. Медведев, О. В. Починка, “Глобальные аттрактор и репеллер диффеоморфизмов Морса–Смейла”, Дифференциальные уравнения и топология. II, Сборник статей. К 100-летию со дня рождения академика Льва Семеновича Понтрягина, Труды МИАН, 271, МАИК «Наука/Интерпериодика», М., 2010, 111–133
  2. V. Z. Grines, T. V. Medvedev, O. V. Pochinka, Dynamical systems on 2- and 3-manifolds, Dev. Math., 46, Springer, Cham, 2016, xxvi+295 pp.
  3. C. Bonatti, V. Grines, O. Pochinka, “Topological classification of Morse–Smale diffeomorphisms on 3-manifolds”, Duke Math. J., 168:13 (2019), 2507–2558
  4. C. Bonatti, V. Grines, V. Medvedev, E. Pecou, “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43:2 (2004), 369–391
  5. V. Z. Grines, E. A. Gurevich, O. V. Pochinka, “Topological classification of Morse–Smale diffeomorphisms without heteroclinic intersections”, J. Math. Sci. (N.Y.), 208:1 (2015), 81–90
  6. V. Grines, E. Gurevich, O. Pochinka, D. Malyshev, “On topological classification of Morse–Smale diffeomorphisms on the sphere $S^n$ ($n>3$)”, Nonlinearity, 33:12 (2020), 7088–7113
  7. D. Malyshev, A. Morozov, O. Pochinka, “Combinatorial invariant for Morse–Smale diffeomorphisms on surfaces with orientable heteroclinic”, Chaos, 31:2 (2021), 023119, 17 pp.
  8. В. З. Гринес, Е. Я. Гуревич, Е. В. Жужома, О. В. Починка, “Классификация систем Морса–Смейла и топологическая структура несущих многообразий”, УМН, 74:1(445) (2019), 41–116
  9. Е. В. Ноздринова, “Существование связного характеристического пространства у градиентно-подобных диффеоморфизмов поверхностей”, Журнал СВМО, 19:2 (2017), 91–97
  10. Ж. Палис, В. ди Мелу, Геометрическая теория динамических систем. Введение, Мир, М., 1986, 302 с.
  11. Ч. Косневски, Начальный курс алгебраической топологии, Мир, М., 1983, 304 с.
  12. В. З. Гринес, С. Х. Капкаева, О. В. Починка, “Трехцветный граф как полный топологический инвариант для градиентно-подобных диффеоморфизмов поверхностей”, Матем. сб., 205:10 (2014), 19–46
  13. D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172
  14. D. Rolfsen, Knots and links, AMS Chelsea Publ. Ser., 346, Reprint with corr. of the 1976 original, Amer. Math. Soc., Providence, RI, 2003, ix+439 pp.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Ноздринова Е.В., Починка О.В., Цаплина Е.В., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».