On finite-dimensional homogeneous Lie algebras of derivations of polynomial rings
- Authors: Arzhantsev I.V.1, Gaifullin S.A.2,3,1, Lopatkin V.E.1
-
Affiliations:
- National Research University Higher School of Economics, Moscow
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Moscow Center for Fundamental and Applied Mathematics
- Issue: Vol 89, No 3 (2025)
- Pages: 5-22
- Section: Articles
- URL: https://journal-vniispk.ru/1607-0046/article/view/303957
- DOI: https://doi.org/10.4213/im9615
- ID: 303957
Cite item
Abstract
For a finite set of homogeneous locally nilpotent derivations of the algebraof polynomials in several variables, a finite dimensionality criterionfor the Lie algebra generated by these derivations is known.The structure of the corresponding finite-dimensional Lie algebraswas also described in previous works. In this paper, we obtaina finite dimensionality criterion for a Lie algebra generated by a finite setof homogeneous derivations, each of which is not locally nilpotent.
About the authors
Ivan Vladimirovich Arzhantsev
National Research University Higher School of Economics, Moscow
Author for correspondence.
Email: arjantsev@hse.ru
Doctor of physico-mathematical sciences, Professor
Sergey Aleksandrovich Gaifullin
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics; National Research University Higher School of Economics, Moscow
Email: sgayf@yandex.ru
Candidate of physico-mathematical sciences
Viktor Evgenyavich Lopatkin
National Research University Higher School of Economics, Moscow
Email: Wickktor@gmail.com
Candidate of physico-mathematical sciences, no status
References
- E. Cartan, “Les groupes de transformations continus, infinis, simples”, Ann. Sci. Ecole Norm. Sup. (3), 26 (1909), 93–161
- Th. Siebert, “Lie algebras of derivations and affine algebraic geometry over fields of characteristic $0$”, Math. Ann., 305 (1996), 271–286
- Yu. Billig, V. Futorny, “Lie algebras of vector fields on smooth affine varieties”, Comm. Algebra, 46:8 (2018), 3413–3429
- А. Н. Рудаков, “Подалгебры и автоморфизмы алгебр Ли картановского типа”, Функц. анализ и его прил., 20:1 (1986), 83–84
- V. V. Bavula, “The group of automorphisms of the Lie algebra of derivations of a polynomial algebra”, J. Algebra Appl., 16:5 (2017), 1750088, 8 pp.
- H. Kraft, A. Regeta, “Automorphisms of the Lie algebra of vector fields on affine $n$-space”, J. Eur. Math. Soc. (JEMS), 19:5 (2017), 1577–1588
- Вик. С. Куликов, “Обобщенная и локальная проблемы якобиана”, Изв. РАН. Сер. матем., 56:5 (1992), 1086–1103
- В. В. Горбацевич, “Полиномиальные реализации конечномерных алгебр Ли”, Функц. анализ и его прил., 54:2 (2020), 25–34
- J. Draisma, “On a conjecture of Sophus Lie”, Differential equations and the Stokes phenomenon (Groningen, 2001), World Sci. Publ., River Edge, NJ, 2002, 65–87
- H. Gradl, “Realization of Lie algebras with polynomial vector fields”, Non-associative algebra and its applications (Oviedo, 1993), Math. Appl., 303, Kluwer Acad. Publ., Dordrecht, 1994, 171–175
- В. М. Бухштабер, Д. В. Лейкин, “Полиномиальные алгебры Ли”, Функц. анализ и его прил., 36:4 (2002), 18–34
- I. V. Arzhantsev, E. A. Makedonskii, A. P. Petravchuk, “Finite-dimensional subalgebras in polynomial Lie algebras of rank one”, Ukrainian Math. J., 63:5 (2011), 827–832
- I. Arzhantsev, A. Liendo, T. Stasyuk, “Lie algebras of vertical derivations on semiaffine varieties with torus actions”, J. Pure Appl. Algebra, 225:2 (2021), 106499, 18 pp.
- I. Arzhantsev, M. Zaidenberg, “Tits-type alternative for groups acting on toric affine varieties”, Int. Math. Res. Not. IMRN, 2022:11 (2022), 8162–8195
- V. V. Bavula, “The groups of automorphisms of the Witt $W_n$ and Virasoro Lie algebras”, Czechoslovak Math. J., 66(141):4 (2016), 1129–1141
- Liang Chen, “Differential operator Lie algebras on the ring of Laurent polynomials”, Comm. Math. Phys., 167:2 (1995), 431–469
- G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia Math. Sci., 136, Invariant Theory Algebr. Transform. Groups, VII, 2nd ed., Springer-Verlag, Berlin, 2017, xxii+319 pp.
- I. Arzhantsev, K. Shakhmatov, “Some finiteness results on triangular automorphisms”, Results Math., 77:2 (2022), 75, 7 pp.
- J.-Ph. Furter, H. Kraft, On the geometry of the automorphism groups of affine varieties, 2018, 179 pp.
- M. Goze, Yu. Khakimdjanov, Nilpotent Lie algebras, Math. Appl., 361, Kluwer Acad. Publ., Dordrecht, 1996, xvi+336 pp.
- M. Demazure, “Sous-groupes algebriques de rang maximum du groupe de Cremona”, Ann. Sci. Ec. Norm. Super. (4), 3:4 (1970), 507–588
- A. Liendo, “$mathbb{G}_a$-actions of fiber type on affine $mathbb{T}$-varieties”, J. Algebra, 324:12 (2010), 3653–3665
- A. Liendo, “Affine $mathbb{T}$-varieties of complexity one and locally nilpotent derivations”, Transform. Groups, 15:2 (2010), 389–425
- H. Kraft, M. Zaidenberg, “Algebraically generated groups and their Lie algebras”, J. Lond. Math. Soc. (2), 109:2 (2024), e12866, 39 pp.
- V. L. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry: the Russell festschrift, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311
- Дж. Хамфри, Линейные алгебраические группы, Наука, M., 1980, 400 с.
Supplementary files
