A criterion for the weak continuityof representations of topological groups in dual Frechet spaces
- Authors: Shtern A.I.1,2,3
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Moscow Center for Fundamental and Applied Mathematics
- Scientific Research Institute for System Studies of RAS, Moscow
- Issue: Vol 89, No 3 (2025)
- Pages: 230-240
- Section: Articles
- URL: https://journal-vniispk.ru/1607-0046/article/view/303964
- DOI: https://doi.org/10.4213/im9610
- ID: 303964
Cite item
Abstract
Sufficient conditions are obtained for the weak continuity of representations of topological groupsin Frechet spaces that are dual to some locally convex spaces by operators adjoint to continuous linear operators in a predual spaceIn particular, it is shownthat a representation $\pi$ of a topological group $G$ on a Frechet space $E$ dual to a locally convex space $E_*$ by adjoint operators is continuous inthe weak$^*$ operator topology if, for some number $q$, $0\le q<1$, there is a neighbourhood $V$ of the neutral element $e$ of $G$ such that, for anyneighbourhood $U$ of the zero element in $E$, for its polar $\mathring{U}$in $E^*$, and for any vector $\xi$ in $U$ and any element$\varphi\in\mathring{U}$ the inequality $|(\pi(g)\xi-\xi)(\varphi)|\le q$holds for each $g\in V$.
About the authors
Alexander Isaakovich Shtern
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics; Scientific Research Institute for System Studies of RAS, Moscow
Author for correspondence.
Email: rroww@mail.ru
Candidate of physico-mathematical sciences, Associate professor
References
- С. Банах, Теория линейных операций, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2001, 272 с.
- R. T. Moore, Measurable, continuous and smooth vectors for semi-groups and group representations, Mem. Amer. Math. Soc., 78, Amer. Math. Soc., Providence, RI, 1968, 80 pp.
- B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127, Amer. Math. Soc., Providence, RI, 1972, iii+96 pp.
- S. A. Gaal, Linear analysis and representation theory, Springer-Verlag, New York–Heidelberg, 1973, ix+688 pp.
- C. C. Moore, “Group extensions and cohomology for locally compact groups. III”, Trans. Amer. Math. Soc., 221:1 (1976), 1–33
- Z. Sasvari, Positive definite and definitizable functions, Math. Top., 2, Akademie Verlag, Berlin, 1994, 208 pp.
- J. W. Baker, B. M. Lashkarizadeh-Bami, “Representations and positive definite functions on topological semigroups”, Glasg. Math. J., 38:1 (1996), 99–111
- K.-H. Neeb, “On a theorem of S. Banach”, J. Lie Theory, 7:2 (1997), 293–300
- V. Pestov, “Review of “K.-H. Neeb, On a theorem of S. Banach, J. Lie Theory, 7:2, 1997, 293–300””, Math. Reviews, 98i:22003 (1998)
- K.-H. Neeb, D. Pickrell, “Supplements to the papers entitled: “On a theorem of S. Banach” and “The separable representations of $U(H)$””, J. Lie Theory, 10:1 (2000), 107–109
- R. Exel, M. Laca, “Continuous Fell bundles associated to measurable twisted actions”, Proc. Amer. Math. Soc., 125:3 (1997), 795–799
- F. Cabello Sanchez, “Pseudo-characters and almost multiplicative functionals”, J. Math. Anal. Appl., 248:1 (2000), 275–289
- B. E. Johnson, “Weak amenability of group algebras”, Bull. London Math. Soc., 23:3 (1991), 281–284
- Ф. Гринлиф, Инвариантные средние на топологических группах и их приложения, Мир, М., 1973, 136 с.
- А. М. Вершик, “Счетные группы, близкие к конечным”, прил. к кн.: Ф. Гринлиф, Инвариантные средние на топологических группах и их приложения, Мир, М., 1973, 112–135
- A. I. Shtern, “Review of ‘F. Cabello Sanchez, Pseudo-characters and almost multiplicative functionals, J. Math. Anal. Appl., 248:1, 2000, 275–289’ ”, Math. Reviews, 2001i:22008 (2001)
- A. I. Shtern, “Almost convergence and its applications to the Fourier–Stieltjes localization”, Russ. J. Math. Phys., 1:1 (1993), 115–125
- А. И. Штерн, “Критерии слабой и сильной непрерывности представлений топологических групп в банаховых пространствах”, Матем. сб., 193:9 (2002), 139–156
- А. И. Штерн, “Условие слабой непрерывности представлений топологических групп в пространствах Фреше”, УМН, 79:4(478) (2024), 179–180
- Х. Шефер, Топологические векторные пространства, Мир, М., 1971, 359 с.
- W. J. Ricker, “Weak compactness in spaces of linear operators”, Miniconference on Probability and Analysis, Sydney, 1991, Proc. Centre Math. Appl. Austral. Nat. Univ., 29, Austral. Nat. Univ., Canberra, 1992, 212–221
- A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, Mem. Amer. Math. Soc., 16, AMS, Providence, RI, 1955
- I. Namioka, “Separate continuity and joint continuity”, Pacific J. Math., 51:2 (1974), 515–531
- L. Narici, E. Beckenstein, Topological Vector Spaces, Pure and Applied Mathematics (Boca Raton), 296, 2nd ed., CRC Press, Boca Raton, FL, 2011
- А. И. Штерн, “Об операторах в пространствах Фреше, подобных изометриям”, Вестник МГУ, сер. матем. мех., 1991, № 4, 67–70
Supplementary files
