Weak quasiclassical asymptotics of polynomial solutions of three-term recurrence relations of high order
- 作者: Aptekarev A.I.1, Novokshenov V.Y.2
-
隶属关系:
- Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
- Institute of Mathematics with Computing Centre, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa
- 期: 卷 89, 编号 6 (2025)
- 页面: 28-44
- 栏目: Articles
- URL: https://journal-vniispk.ru/1607-0046/article/view/358688
- DOI: https://doi.org/10.4213/im9695
- ID: 358688
如何引用文章
详细
the weak asymptotics of
The case
作者简介
Alexander Aptekarev
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
Email: aptekaa@gmail.com
Scopus 作者 ID: 6603809965
Doctor of physico-mathematical sciences, Professor
Victor Novokshenov
Institute of Mathematics with Computing Centre, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa
Email: novik53@mail.ru
Doctor of physico-mathematical sciences, Professor
参考
- A. Aptekarev, V. Kaliaguine, J. Van Iseghem, “The genetic sums' representation for the moments of a system of Stieltjes functions and its application”, Constr. Approx., 16:4 (2000), 487–524
- A. I. Aptekarev. V. A. Kalyagin, E. B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Appox., 30:2 (2009), 175–223
- J. Nuttall, “Asymptotics of diagonal Hermite–Pade polynomials”, J. Approx. Theory, 42:4 (1984), 299–386
- A. I. Aptekarev, “Multiple orthogonal polynomials”, J. Comput. Appl. Math., 99:1-2 (1998), 423–447
- L. A. Pastur, “Spectral and probabilistic aspects of matrix models”, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, 1996
- A. B. J. Kuijlaars, W. Van Assche, “The asymptotic zero distribution of orthogonal polynomials with varying recurrence coefficients”, J. Approx. Theory, 99:1 (1999), 167–197
- P. Deift, K. T.-R. McLaughlin, A continuum limit of the Toda lettice, Mem. Amer. Math. Soc., 131, no. 624, Amer. Math. Soc., Providence, RI, 1998, x+216 pp.
- A. I. Aptekarev, W. Van Assche, “Asymptotics of discrete orthogonal polynomials and the continuum limit of the Toda lattice”, J. Phys. A, 34:48 (2001), 10627–10637
- A. I. Aptekarev, J. S. Geronimo, W. Van Assche, “Varying weights for orthgonal polynomials with monotonically varying recurrence coefficients”, J. Approx. Theory, 150:2 (2008), 214–238
- O. Costin, R. Costin, “Rigorous WKB for finite-order linear recurrence relations with smooth coefficients”, SIAM J. Math. Anal., 27:1 (1996), 110–134
- R. M. Kashaev, “A link invariant from quantum dilogarithm”, Modern Phys. Lett. A, 10:19 (1995), 1409–1418
- R. M. Kashaev, “The hyperbolic volume of knots from the quantum dilogarithm”, Lett. Math. Phys., 39:3 (1997), 269–275
- S. Garoufalidis, Thang T. Q. Lê, “The colored Jones function is $q$-holonomic”, Geom. Topol., 9 (2005), 1253–1293
- S. Garoufalidis, J. S. Geronimo, “Asymptotics of $q$-difference equations”, Primes and knots, Contemp. Math., 416, Amer. Math. Soc., Providence, RI, 2006, 83–114
- S. Garoufalidis, C. Koutschan, “Irreducibility of $q$-difference operators and the knot $7_4$”, Algebr. Geom. Topol., 13:6 (2013), 3261–3286
- A. I. Aptekarev, T. V. Dudnikova, D. N. Tulyakov, “Recurrence relations and asymptotics of colored Jones polynomials”, Lobachevskii J. Math., 42:11 (2021), 2580–2595
- A. I. Aptekarev, T. V. Dudnikova, D. N. Tulyakov, “Volume conjecture and WKB asymptotics”, Lobachevskii J. Math., 43:8 (2022), 2057–2079
- I. K. Kostov, I. Krichever, M. Mineev-Weinstein, P. B. Wiegmann, A. Zabrodin, “The $tau$-function for analytic curves”, Random matrix models and their applications, Math. Sci. Res. Inst. Publ., 40, Cambridge Univ. Press, Cambridge, 2001, 285–299
- P. Elbau, Random normal matrices and polynomial curves, Ph.D. thesis, ETH Zürich, 2006
- P. M. Bleher, A. B. J. Kuijlaars, “Orthogonal polynomials in the normal matrix model with a cubic potential”, Adv. Math., 230:3 (2012), 1272–1321
- P. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, Courant Inst. Math. Sci., New York; Amer. Math. Soc., Providence, RI, 1999, viii+273 pp.
- R. Teodorescu, E. Bettelheim, O. Agam, A. Zabrodin, P. Wiegmann, “Normal random matrix ensemble as a growth problem”, Nuclear Phys. B, 704:3 (2005), 407–444
- A. I. Aptekarev, “Spectral problems of high-order recurrences”, Spectral theory and differential equations, Amer. Math. Soc. Transl. Ser. 2, 233, Adv. Math. Sci., 66, Amer. Math. Soc., Providence, RI, 2014, 43–61
补充文件
