On the representations of the $C^*$ -algebra of singular integral operators on a complex contour with discontinuous semi-almost periodic coefficients
- 作者: Baibulov I.V.1
-
隶属关系:
- Saint Petersburg State University
- 期: 卷 89, 编号 6 (2025)
- 页面: 45-84
- 栏目: Articles
- URL: https://journal-vniispk.ru/1607-0046/article/view/358689
- DOI: https://doi.org/10.4213/im9665
- ID: 358689
如何引用文章
详细
discontinuities at the contour points and stabilize to almost periodic functions
on each arc extending to infinity. All primitive ideals of this algebra are
listed.
作者简介
Ilnur Baibulov
Saint Petersburg State University
Email: i_baibulov@mail.ru
without scientific degree, no status
参考
- D. Sarason, “Toeplitz operators with semi-almost periodic symbols”, Duke Math. J., 44:2 (1977), 357–364
- A. Böttcher, Yu. I. Karlovich, I. M. Spitkovsky, Convolution operators and factorization of almost periodic matrix functions, Oper. Theory Adv. Appl., 131, Birkhäuser Verlag, Basel, 2002, xii+462 pp.
- A. Böttcher, Yu. I. Karlovich, I. M. Spitkovsky, “The $C^*$-algebra of singular integral operators with semi-almost periodic coefficients”, J. Funct. Anal., 204:2 (2003), 445–484
- R. G. Douglas, Banach algebra techniques in operator theory, Pure Appl. Math., 49, Academic Press, New York–London, 1972, xvi+216 pp.
- A. Dynin, “Multivariable Wiener–Hopf operators. I. Representations”, Integral Equations Operator Theory, 9:4 (1986), 537–556
- D. P. Williams, Crossed products of $C^*$-algebras, Math. Surveys Monogr., 134, Amer. Math. Soc., Providence, RI, 2007, xvi+528 pp.
- H. O. Cordes, “On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators”, J. Funct. Anal., 18:2 (1975), 115–131
- A. Dynin, “Inversion problem for singular integral operators: $C^*$-approach”, Proc. Nat. Acad. Sci. U.S.A., 75:10 (1978), 4668–4670
- V. Kasatkin, “On the spectrum of the algebra of singular integral operators with discontinuities in symbols in momenta and coordinates”, J. Math. Sci. (N.Y.), 172:4 (2011), 477–531
- A. Antonevich, A. Lebedev, Functional differential equations. I. $C^*$-theory, Pitman Monogr. Surveys Pure Appl. Math., 70, Longman Scientific & Technical, Harlow, 1994, viii+504 pp.
- R. J. Archbold, J. S. Spielberg, “Topologically free actions and ideals in discrete $C^*$-dynamical systems”, Proc. Edinburgh Math. Soc. (2), 37:1 (1994), 119–124
- H. Takai, “On a duality for crossed products of $C^*$-algebras”, J. Funct. Anal., 19:1 (1975), 25–39
补充文件
