Comparative analysis of machine and professional translations of technical texts (on the material of operating instructions)

Cover Page

Cite item

Full Text

Abstract

In an era of rapid scientific and technological progress, operating instructions, which are part of the technical documentation, play an important role. Accurate translation of such texts helps to prevent operational errors that can lead to injuries and accidents. The need for quality and fast translation of technical texts determine the relevance of the undertaken research. Analysing the quality of machine translation helps to improve information processing algorithms, which leads to higher translation accuracy. The aim of the study is to conduct a comparative analysis of machine translation and professional translation of technical texts from English into Russian on the example of operating instructions. In the course of the research the following main tasks were solved: studying the classification of machine translation systems, genre-stylistic and lexico-grammatical features of technical texts, classification of machine translation errors; carrying out a comparative analysis of machine and professional translations of texts of operating instructions; revealing the frequency of occurrence and the nature of translation errors in machine translation. The material of the study is the texts of the operating instructions of medical equipment in English and Russian languages, namely mobile ultrasound diagnostic systems ACUSON X600 and ACUSON X700 produced by Siemens. Machine translation of the selected material was performed using the online translation services Yandex Translator and Google Translate. The work uses general scientific methods: analysis and synthesis, generalisation, classification, quantitative method, as well as linguistic methods: descriptive, comparative, method of contextual analysis of translation. The most common are: violations related to the denotative content of the text; errors that distort the semantic content of the original text; errors that reduce the accuracy of conveying the semantic content of the original text; violations in conveying the functional, stylistic or genre features of the original text; calquing the original; violations related to the design requirements for this type of texts, lexical and grammatical norms of the translating language, orthography and punctuation, conveyance of specific types of the given text. The least numerous group of errors are violations of conveying the expressive background of the original and the author’s evaluation.

About the authors

Olga Andreyevna Kononova

Tomsk State Pedagogical University

Author for correspondence.
Email: olga1722@inbox.ru
Tomsk, Russian Federation

Anastasiya Sergeyevna Persidskaya

Tomsk State Pedagogical University

Email: persidskayaas@tspu.ru
Tomsk, Russian Federation

References

  1. Marchuk Yu.N. Komp’yuternaya lingvistika: uchebnoye posobiye [Computer linguistics: textbook]. Moscow, AST: Vostok-Zapad Publ., 2007. 317 p. (in Russian).
  2. Sukhoverkhov A.V., de Vitt D., Manasidi I.I., Nitta K., Krstich V. Trudnosti mashinnogo perevoda: kontekstnaya yazykovaya neopredelennost’ [Machine translation difficulties: contextual linguistic uncertainty]. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 2. Yazykoznanie – Science Journal of Volgograd State University. Linguistics, 2019, vol. 18, no. 4, pp. 129-144 (in Russian). doi: https://doi.org/10.15688/jvolsu2.2019.4.10
  3. Savvateeva Yu.O., Korsak M.V., Danilova E.V. Sravnitel’nyy analiz mashinnogo perevoda [Comparative analysis of machine translation systems]. Informatsionnyye tekhnologii v nauke i obrazovanii: materialy Vserossiyskoy nauchno-prakticheskoy konferentsii (Khabarovsk, 15–16 Dekabrya 2023 g.). Pod red. E.V. Faleyevoy [Information technologies in science and education: proceedings of the All-Russian scientific and practical conference (Khabarovsk, 15–16 December 2023). Ed. by E.V. Faleyeva]. 2024. Pp. 101–106 (in Russian).
  4. Sokolova N.V. Machine vs Human Translation in the Synergetic Translation Space. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 2. Yazykoznaniye – Science Journal of Volgograd State University. Linguistics, 2021, vol. 20, no. 6, pp. 89–98. doi: https://doi.org/10.15688/jvolsu2.2021.6.8
  5. Kuzmin O.I. Sopostavitel’noye issledovaniye sovremennogo tsifrovogo instrumentariya avtomatisirovannogo perevoda (na material podyayka ‘logistika’). Avtoref. dis. kand. filol. nauk [A comparative study of modern digital tools for automated translation (on the material of the sub-language ‘logistics’). Abstract of thesis cand. philol. sci.]. Moscow, 2023. 23 p. (in Russian).
  6. Lyasuk A.R., Kalashnikova L.V. K voprosu o kachestve mashinnogo perevoda uzkospetsializirovannykh nauchnykh tekstov [On the quality of machine translation of highly specialised scientific texts]. Aktual’nyye voprosy lingvistiki i lingvodidaktiki v kontekste mezhkul’turnoy kommunikatsii: sbornik materialov IV Vserossiyskoy nauchno-prakticheskoy konferentsii (28 marta 2024 g.). [Actual issues of linguistics and linguodidactics in the context of intercultural communication: collection of materials of the IV All-Russian scientific-practical conference (28 March 2024)]. Ed. O.Yu. Ivanova. 2024. Pp. 173–178 (in Russian).
  7. Tregubova Yu.A. Programmy mashinnogo perevoda pri rabote nad spetsial’nym tekstom [Machine translation programmes when working on special text]. Filologiya, lingvistika i lingvodidaktika v sovremennom obshchestve: sbornik materialov mezhdunarodnoy nauchnoy konferentsii. 11–12 aprelya 2024 g. [Philology, Linguistics and Linguodidactics in Modern Society: Collection of Materials of the International Scientific Conference. 11–12 April 2024]. Elets, ElSU Publ., 2024. Pp. 111–114 (in Russian).
  8. Siemens ACUSON X600, ACUSON X700 Diagnosticheskaya ul’trazvukovaya sistema: instruktsiya po ekspluatatsii [Diagnostic Ultrasound System: instructions for use]. 2014. 382 p. (in Russian). URL: https://www.usclub.ru/upload/files/product/resource/X7002-0_X6001-0_Manual_RUS_31838986.pdf (accessed 15 November 2024).
  9. Siemens ACUSON X600, ACUSON X700 Diagnostic Ultrasound System: instructions for use. 2014. 382 p. URL: http://www.frankshospitalworkshop.com/equipment/documents/ultrasonographs/user_manuals/Siemens%20Acuson%20X600,%20X700%20Ultrasound%20-%20User%20manual.pdf (accessed 15 November 2024).
  10. Bashmakov A.I., Bashmakov I.A. Intellektual’nyye informatsionnyye tekhnologii: uchebnoye posobiye [Intelligent information technology: textbook]. Moscow, MGTU im. Baumana Publ., 2005. 304 p. (in Russian).
  11. Kastberg P. Machine Translation Tools – Tools of the Translator’s Trade. Communication & Language at Work, 2012, vol. 1, no. 1, pp. 34–45. URL: https://www.researchgate.net/publication/277845572_Machine_Translation_Tools_-_Tools_of_the_Translator’s_Trade (accessed 17 November 2024).
  12. Wang Y. Research of types and current state of machine translation. Applied and Computational Engineering: Proceedings of the 2023 International Conference on Machine Learning and Automation, 2024, vol. 37, pp. 95–101. URL: https://www.researchgate.net/publication/378435724_Research_of_types_and_current_state_of_machine_translation (accessed 15 November 2024).
  13. Liu Y. The development and advance of machine translation. Applied and Computational Engineering: Proceedings of the 5th International Conference on Computing and Data Science, 2023, vol. 13, pp. 213–220. URL: https://www.ewadirect.com/proceedings/ace/article/view/4508 (accessed 18 November 2024).
  14. Benková L. Neural Machine Translation as a Novel Approach to Machine Translation. Proceedings of the 13th International Scientific Conference on Distance Learning in Applied Informatics. 2020. Pp. 499–508. URL: https://www.researchgate.net/publication/344476131_Neural_Machine_Translation_as_a_Novel_Approach_to_Machine_Translation (accessed 26 November 2024).
  15. Cheng Y. Joint Training for Neural Machine Translation. Singapore, Springer Publ., 2019. 78 p.
  16. Graves A. Supervised Sequence Labelling with Recurrent Neural Networks. Heidelberg, Springer Berlin Publ., 2012. 146 p.
  17. Somers H. Machine translation: latest developments. The Oxford Handbook of Computational Linguistics, 2012, pp. 512–528. URL: https://personalpages.manchester.ac.uk/staff/harold.somers/Mitkov-book-chapter.pdf (accessed 25 November 2024).
  18. Latyshev L.K. Tekhnologiya perevoda: uchebnoye posobiye [Translation technology: a textbook]. Moscow, NVI-TESAURUS Publ., 2000. 280 p. (in Russian).
  19. Komissarov V.N. Teoriya perevoda (lingvisticheskiye aspekty): uchebnik [Translation theory (linguistic aspects): textbook]. Moscow, Vysshaya shkola Publ., 1990. 253 p. (in Russian).
  20. Garbovskiy N.K. Teoriya perevoda [Theory of translation]. Moscow, Moscow University Publ., 2007. 544 p. (in Russian).
  21. Semenov A.L. Sovremennyye informatsionnyye tekhnologii i perevod: uchebnoye posobiye [Modern Information Technologies and Translation: textbook]. Moscow, Akadimiya Publ., 2008. 224 p. (in Russian).
  22. Buzadzhi D.M., Gusev V.V., Lanchikov V.K., Psurtsev D.V. Novyy vzglyad na klassifikatsiyu perevodcheskikh oshibok. Pod red. I.I. Ubina [A new look at the classification of translation errors. Ed. I.I. Ubina]. Moscow, Vserossiyskiy tsentr peredoda nauchno-tekhnicheskoy literatury i dokumentatsii, 2009. 119 p. (in Russian).
  23. Komissarov V.N., Retsker Ya.I., Tarkhov V.I. Posobiye po perevodu s angliyskogo na russkiy: uchebnoye posobiye. V 3-kh chatyakh. Chast’ 2. Grammaticheskiye i zhanrovo-stilisticheskiye osnovy perevoda [Manual on translation from English into Russian: textbook. In 3 parts. Part 2: Grammatical and genre-stylistic bases of translation]. Moscow, Vysshaya shkola Publ., 1965. 287 p. (in Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».