利用惯性传感器对银屑病关节炎儿童步态的仪器分析

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

背景。仪器步态分析(Instrumental gait analysis, IGA)提供了一种客观且定量的方式来评估人体运动模式的特征。

研究目的。 研究患有银屑病关节炎(Psoriatic Arthritis, PsA)儿童的步态定量参数,利用惯性传感器识别早期诊断标志物,并评估其在医学康复中的应用潜力。

材料与方法。本研究纳入 34 名年龄在 11 至 17 岁之间的儿童。其中,研究组包括 17 名确诊为银屑病及银屑病关节炎的儿童(n=17);对照组包括 17 名无明显神经系统障碍及无影响步态生物力学的肌肉骨骼疾病的儿童(n=17)。 步态参数的记录采用 “Stedis” 训练系统,使用 8 个生物传感器,分别固定于双下肢的足部、小腿远端、大腿近端、骶骨以及第 12 胸椎水平处。在实验过程中,记录步态的时空参数和运动学参数。

结果。本研究对比分析了两组儿童的步态特征:对照组为无明显神经系统损伤或影响步态生物力学的肌肉骨骼疾病的儿童,研究组为确诊银屑病关节炎(PsA)的儿童。研究结果显示,与对照组相比,PsA 组儿童受累下肢的支撑期和单支撑期时间均有所延长。受累下肢的摆动期时间比健侧缩短约 1.5%。此外,受累下肢的足部抬升高度比健侧高出 5 cm。与对照组相比,健康儿童的健侧单支撑相时间高出近 4%。统计学差异具有显著性(p=0.009)。 PsA 组儿童受累下肢的摆动相时间比对照组儿童高 2.3%。统计学差异具有显著性(p=0.019)。 整体来看,对照组儿童的摆动相时间比 PsA 组儿童高近 4%。统计学差异具有显著性(p=0.019)。

结论。具有 PsA 特征的步态模式由特定的发病机制决定,其发展机制不同于其他类型的关节炎。

作者简介

Ulyana M. Kan

N.I. Pirogov Russian National Research Medical University

Email: polt2795@gmail.com
ORCID iD: 0009-0002-7445-9626

postgraduate student

俄罗斯联邦, 1 Ostrovityanova str, Moscow, 117997

Olga A. Laisheva

N.I. Pirogov Russian National Research Medical University

编辑信件的主要联系方式.
Email: olgalaisheva@mail.ru
ORCID iD: 0000-0002-8084-1277
SPIN 代码: 8188-2819

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, 1 Ostrovityanova str, Moscow, 117997

参考

  1. Skvortsov DV. Diagnosis of motor pathology by instrumental methods: gait analysis stabilometry. Andreev TM, editor. Moscow, 2007. 640 p. (In Russ.)
  2. Roberts M, Mongeon D, Prince F. Biomechanical parameters for gait analysis: a systematic review of healthy human gait. Physical Therapy and Rehabilitation. 2017;4(1):6. doi: 10.7243/2055-2386-4-6
  3. Baker R. Gait analysis methods in rehabilitation. Journal of neuroengineering and rehabilitation. 2006;3(1):4. doi: 10.1186/1743-0003-3-4 EDN: PUURIU
  4. Berner K, Cockcroft J, Louw Q. Kinematics and temporospatial parameters during gait from inertial motion capture in adults with and without HIV: a validity and reliability study. BioMed Eng OnLine. 2020;19(1):57. doi: 10.1186/s12938-020-00802-2 EDN: LSSHXB
  5. Abbass SJ. Kinematic analysis of human gait cycle. Nahrain University, College of Engineering Journal. 2014;16(2):208–222.
  6. Mo S, Chow DHK. Accuracy of three methods in gait event detection during overground running. Gait Posture. 2018;59:93–8. doi: 10.1016/j.gaitpost.2017.10.009
  7. Ewins D, Collins T. Clinical Gait Analysis. Clinical Engineering Academic Press. 2014:389–406. doi: 10.1016/B978-0-12-396961-3.00025-1
  8. Hillman SJ, Stansfield BW, Richardson AM, Robb JE. Development of temporal and distance parameters of gait in normal children. Gait & Posture. 2009;29:81–85. doi: 10.1016/j.gaitpost.2008.06.012
  9. Kluge F, Gaßner H, Hannink J, et al. Towards mobile gait analysis: concurrent validity and test-retest reliability of an inertial measurement system for the assessment of spatio-temporal gait parameters. Sensors. 2017;17:1522. doi: 10.3390/s17071522
  10. Sass P, Hassan G. Lower extremity abnormalities in children. American Family Physician. 2003;36(3):22–27.
  11. Johnston L, Eastwood D, Jacobs B. Variations in normal gait development, Symposium. Surgery and Orthopaedics, Paediatrics and Child Health. 2014;24(5):204–207. doi: 10.1016/j.paed.2014.03.006
  12. Inman VT, Ralston HJ, Frank T. Human Walking. London: Williams and Wilkins; 1981.
  13. Kochergin SN, Tamrazova OB, Stadnikova AS. Analysis in children and employees of the Medical Council of the Republic. 2016;2:77–10.
  14. Alekseeva EI. Juvenile idiopathic arthritis: clinical picture, diagnosis, treatment. Current Pediatrics. 2015;14(1):78–94. doi: 10.15690/vsp.v14i1.1266 EDN: TIHOVF
  15. Chebysheva SN, Geppe NA, Zholobova ES, et al. Clinical features of psoriatic arthritis in childhood. Doctor.Ru. 2020;19(10):22–26. doi: 10.31550/1727-2378-2020-19-10-22-26 EDN: BRNISF
  16. Molochkov VA, Yakubovskaya ES, Mylov NM. Psoriasis and psoriatic arthritis. Clinic, diagnosis, treatment. Moscow: Monica; 2015. p. 26. (In Russ.)
  17. Lee K, Armstrong AU. Review of the results of treatment of patients with psoriasis. Dermatol Clin. 2012;30(1):61–72. doi: 10.1016/j.det.2011.08.012
  18. Adaskevich VP, Katina MA. Clinical features of psoriasis in children and adolescents. Medical Council of the Republic. 2018;2:83–88.
  19. Chen S, Lach J, Lo B, Yang G-Z. Toward pervasive gait analysis with wearable sensors: a systematic review. J Biomed Heal Informatics. 2016;20:1521–37. doi: 10.1109/JBHI.2016.2608720
  20. Iosa M, Picerno P, Paolucci S, Morone G. Wearable inertial sensors for human movement analysis. Expert Rev Med Devices. 2016;13:641-659. doi: 10.1080/17434440.2016.1198694
  21. Picerno P. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: a review of methodological approaches. Gait Posture. 2017;51:239–46. doi: 10.1016/j.gaitpost.2016.11.008
  22. Mikhailova AA, Korchazhkina NB, Kotenko KV, Koneva ES. Experience in the use of robotic biomechanical medical rehabilitation techniques in patients after acute cerebrovascular accident. Problems of Balneology, Physiotherapy and Exercise Therapy. 2021;98(3-2):127–128. (In Russ.) EDN: OOEAJW
  23. Kotenko KV, Khan MA, Korchazhkina NB, et al. Modern non-drug technologies of medical rehabilitation of children. Moscow: GEOTAR-Media; 2022. 440 р. (In Russ.) doi: 10.33029/9704-7062-6-MTM-2022-1-440 EDN: IBGAKQ

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Comparative analysis of the "Healthy lower limb" data in patients with diagnoses of psoriasis, psoriatic arthritis and a control group. M_K — arithmetic mean of children in the control group; m_K — standard deviation; M_PsA — arithmetic mean. Children with PsA; m_PsA — standard deviation.

下载 (120KB)
3. Fig. 2. Comparative analysis of the "Affected lower limb" data in patients with diagnoses of psoriasis, psoriatic arthritis and a control group. M_K — arithmetic mean of children in the control group; m_K — standard deviation; M_PsA — arithmetic mean. Children with PsA; m_PsA — standard deviation.

下载 (117KB)
4. Fig. 3. Kinematic changes in gait parameters in the hip joint.

下载 (90KB)
5. Fig. 4. Kinematic changes in gait parameters in the knee joint.

下载 (85KB)
6. Fig. 5. Kinematic changes in gait parameters in the ankle joint.

下载 (93KB)

版权所有 © Eco-Vector, 2025


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».