Терапевтический потенциал технологии гипоксического кондиционирования в реабилитации после инсульта: от молекулярных и физиологических механизмов к клинической практике (нарративный обзор)
- Авторы: Ньямукондива М.1, Конева Е.С.1,2, Глазачев О.С.1
-
Учреждения:
- Первый Московский государственный медицинский университет им. И.М. Сеченова
- МЕДСИ
- Выпуск: Том 24, № 5 (2025)
- Страницы: 321-331
- Раздел: Обзоры
- URL: https://journal-vniispk.ru/1681-3456/article/view/354740
- DOI: https://doi.org/10.17816/rjpbr679816
- EDN: https://elibrary.ru/elyqay
- ID: 354740
Цитировать
Аннотация
Острое нарушение мозгового кровообращения (ОНМК) остаётся одной из ведущих причин инвалидизации и смертности населения, сохраняя риски развития и прогрессирования когнитивных и функциональных нарушений даже в позднем восстановительном периоде. Острота проблемы актуализирует поиск инновационных подходов к реабилитации и поддержанию удовлетворительного качества жизни таких пациентов. Технология гипоксического кондиционирования в интервальных режимах, в частности в виде курса процедур интервальных гипоксически-гипероксических экспозиций (ИГГЭ), представляет собой перспективный нефармакологический подход, способный потенцировать процессы нейропластичности, синаптогенеза, церебральную гемодинамику. Целью данного обзора является анализ терапевтического потенциала ИГГЭ в контексте пост-ОНМК реабилитации, включая её влияние на молекулярные механизмы адаптации, ангиогенез и функциональное восстановление. Методология включает систематический поиск в базах PubMed, Scopus, eLIBRARY.RU и др., с акцентом на исследования, связанные с гипоксическим прекондиционированием, нейропротекцией и клиническими исходами. Результаты демонстрируют, что ИГГЭ активирует HIF-1α-зависимые пути, стимулируя ангиогенез через VEGF и нейрогенез посредством BDNF, что подтверждено экспериментальными и клиническими данными. Умеренная интервальная гипоксия (9–16% O₂) оптимизирует окислительно-восстановительный баланс, подавляя провоспалительные цитокины (IL-6, TNF-α) и усиливая антиоксидантную защиту через Nrf2, что коррелирует со снижением объёма ишемического повреждения. Клинически процедуры ИГГЭ улучшают когнитивные показатели (память, внимание) и моторные функции, особенно в комбинации с аэробными тренировками, повышая толерантность к нагрузкам (увеличение дистанции теста шестиминутной ходьбы на 15–20%) и качество жизни. Кардиопротективные эффекты включают нормализацию артериального давления и снижение маркёров окислительного стресса (малоновый диальдегид), что является значимым для пациентов с полиморбидностью. Интеграция ИГГЭ в мультимодальные реабилитационные программы способствует синергизму методов, усиливая нейроваскулярное ремоделирование. Несмотря на перспективность, требуется оптимизация персонализированных протоколов с учётом возраста и сопутствующих патологий, а также проведение рандомизированных исследований для оценки долгосрочной безопасности. Обзор адресован неврологам, молекулярным биологам и реабилитологам, подчёркивая потенциал трансляции ИГГЭ в клиническую практику при условии дальнейшей валидации её эффективности.
Полный текст
Открыть статью на сайте журналаОб авторах
Малачи Ньямукондива
Первый Московский государственный медицинский университет им. И.М. Сеченова
Автор, ответственный за переписку.
Email: nyamukondiva_m@student.sechenov.ru
ORCID iD: 0000-0002-9834-2505
Россия, Москва
Елизавета Сергеевна Конева
Первый Московский государственный медицинский университет им. И.М. Сеченова; МЕДСИ
Email: elizaveta.coneva@yandex.ru
ORCID iD: 0000-0002-9859-194X
SPIN-код: 8200-2155
д-р мед. наук, доцент, профессор
Россия, Москва; МоскваОлег Станиславович Глазачев
Первый Московский государственный медицинский университет им. И.М. Сеченова
Email: glazachev@mail.ru
ORCID iD: 0000-0001-9960-6608
SPIN-код: 6168-2110
д-р мед. наук, профессор
Россия, МоскваСписок литературы
- Kuriakose D, Xiao Z. Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. Int J Mol Sci. 2020;21(20):7609. doi: 10.3390/ijms21207609
- Grefkes C, Fink GR. Recovery from stroke: current concepts and future perspectives. Neurological research and practice. 2020; 2(1):17. doi: 10.1186/s42466-020-00060-6
- Kadykov AS, Shakhparonova NV. Rehabilitation after stroke. Russian Medical Journal. 2003;11(25):1390–1394. (In Russ.)
- Levin OS, Bogolepova AN. Poststroke motor and cognitive impairments: clinical features and current approaches to rehabilitation. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(11):99–107. doi: 10.17116/jnevro202012011199 EDN: VZORCZ
- Damulin IV, Ekusheva EV. Poststroke neuroplasticity processes. Neurology, Neuropsychiatry, Psychosomatics. 2014;6(3):69–74. doi: 10.14412/2074-2711-2014-3-69-74 EDN: SXMTMP
- Kalaria RN, Akinyemi R, Ihara M. Stroke injury, cognitive impairment and vascular dementia. Biochim Biophys Acta. 2016;1862(5):915–925. doi: 10.1016/j.bbadis.2016.01.015
- Jokinen H, Melkas S, Ylikoski R, et al. Post-stroke cognitive impairment is common even after successful clinical recovery. Eur J Neurol. 2015;22(9):1288–1294. doi: 10.1111/ene.12743
- Katan M, Luft A. Global Burden of Stroke. Semin Neurol. 2018;38(2):208–211. doi: 10.1055/s-0038-1649503
- Baillieul S, Chacaroun S, Doutreleau S, et al. Hypoxic conditioning and the central nervous system: A new therapeutic opportunity for brain and spinal cord injuries? Exp Biol Med (Maywood). 2017;242(11):1198–1206. doi: 10.1177/1535370217712691
- Bondarenko NN, Khomutov EV, Ryapolova TL, et al. Molecular and cellular mechanisms of hypoxic response. Ulyanovsk Medico-Biological Journal. 2023;(2):6–29. doi: 10.34014/2227-1848-2023-2-6-29. EDN: KDWYWV
- Marín-Medina DS, Arenas-Vargas PA, Arias-Botero JC, et al. New approaches to recovery after stroke. Neurol Sci. 2024;45(1):55–63. doi: 10.1007/s10072-023-07012-3
- Burtscher J, Citherlet T, Camacho-Cardenosa A, et al. Mechanisms underlying the health benefits of intermittent hypoxia conditioning. J Physiol. 2024;602(21):5757–5783. doi: 10.1113/JP285230
- Burtscher J, Glazachev OS, Kopp M, Burtscher M. Effects of intermittent hypoxia exposures and interval hypoxic training on exercise tolerance (narrative review). Sports Medicine: Research and Practice. 2024;14(2):16–23. doi: 10.47529/2223-2524.2024.2.5 EDN: NXMOXI
- Rybnikova EA, Nalivaeva NN, Zenko MY, Baranova KA. Intermittent Hypoxic Training as an Effective Tool for Increasing the Adaptive Potential, Endurance and Working Capacity of the Brain. Front Neurosci. 2022;16:941740. doi: 10.3389/fnins.2022.941740 EDN: EMYARG
- Glazachev OS, Lyamina NP, Spirina GK. Intermittent hypoxic conditioning: experience and potential in cardiac rehabilitation programs. Russian Journal of Cardiology. 2021;26(5):4426. doi: 10.15829/1560-4071-2021-4426 EDN: NDKICG
- Semenov DG, Belyakov AV. Hypoxic Conditioning as a Stimulus for the Formation of Hypoxic Tolerance of the Brain. Progress in physiological science. 2023;54(2):3–19. doi: 10.31857/S0301179823020066. EDN: PLLHTS
- Gluschenkova NV, Sarkisian OG, Goncharova ZA. Malignant ischemic stroke: clinical and biochemical features of diagnosis. South Russian Journal of Therapeutic Practice. 2023;4(2):35–45. doi: 10.21886/2712-8156-2023-4-2-35-45 EDN: UBXJHP
- Serebrovskaya TV, Manukhina EB, Smith ML, Downey HF, Mallet RT. Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp Biol Med (Maywood). 2008;233(6):627–650. doi: 10.3181/0710-MR-267 EDN: LKZULR
- Behrendt T, Bielitzki R, Behrens M, Herold F, Schega L. Effects of intermittent hypoxia–hyperoxia on performance-and health-related outcomes in humans: A systematic review. Sports Medicine — Open. 2022;8(1):70. doi: 10.1186/s40798-022-00450-x
- Glazachev O, Kopylov P, Susta D, Dudnik E, Zagaynaya E. Adaptations following an intermittent hypoxia-hyperoxia training in coronary artery disease patients: a controlled study. Clin Cardiol. 2017;40(6):370–376. doi: 10.1002/clc.22670 EDN: XNDVJA
- Kono Y, Fukuda S, Hanatani A, et al. Remote ischemic conditioning improves coronary microcirculation in healthy subjects and patients with heart failure. Drug Des Devel Ther. 2014;8:1175–1181. doi: 10.2147/DDDT.S68715
- Bayer U, Glazachev OS, Likar R, et al. Adaptation to intermittent hypoxia–hyperoxia improves cognitive performance and exercise tolerance in the elderly. Adv Gerontol. 2017;7(3):214–20. doi: 10.1134/S2079057017030031 EDN: PRTFOT
- Trumbower RD, Jayaraman A, Mitchell GS, Rymer WZ. Exposure to acute intermittent hypoxia augments somatic motor function in humans with incomplete spinal cord injury. Neurorehabil Neural Repair. 2012;26(2):163–172. doi: 10.1177/1545968311412055
- Mikhalishchina AS, Zagayniy ED, Vasina YV, Glazachev OS. Effect of single interval hypoxic stimulation on cognitive functions of healthy volunteers. Psychophysiology News. 2023;(4):86–95. doi: 10.34985/d2699-5404-1619-b EDN: SXUBQJ
- Tao B, Gong W, Xu C, Ma Z, Mei J, Chen M. The relationship between hypoxia and Alzheimer's disease: an updated review. Front Aging Neurosci. 2024;16:1402774. doi: 10.3389/fnagi.2024.1402774
- Janssen Daalen JM, Meinders MJ, Giardina F, et al. Multiple N-of-1 trials to investigate hypoxia therapy in Parkinson's disease: study rationale and protocol. BMC Neurol. 2022;22(1):262. doi: 10.1186/s12883-022-02770-7
- Cai M, Chen X, Shan J, et al. Intermittent Hypoxic Preconditioning: A Potential New Powerful Strategy for COVID-19 Rehabilitation. Front Pharmacol. 2021;12:643619. doi: 10.3389/fphar.2021.643619
- Kostenko AA, Koneva ES, Malyutin DS, et al. Hypoxic training in rehabilitation of patients at the early stages of recovery after SARS-CoV-2 pneumonia. Problems of Balneology, Physiotherapy and Exercise Therapy. 2022;99(4–2):11–16. doi: 10.17116/kurort20229904211. EDN: JLLLKB
- Bestavashvili AA, Glazachev OS, Bestavashvili AA, et al. The effects of intermittent hypoxic-hyperoxic exposures on lipid profile and inflammation in patients with metabolic syndrome. Front Cardiovasc Med. 2021;8:700826. doi: 10.3389/fcvm.2021.700826 EDN: CPYBXP
- Serebrovska TV, Grib ON, Portnichenko VI, et al. Intermittent Hypoxia/Hyperoxia Versus Intermittent Hypoxia/Normoxia: Comparative Study in Prediabetes. High Alt Med Biol. 2019;20(4):383–391. doi: 10.1089/ham.2019.0053 EDN: ZBEJZV
- Susta D, Dudnik E, Glazachev OS. A programme based on repeated hypoxia–hyperoxia exposure and light exercise enhances performance in athletes with overtraining syndrome: a pilot study. Clin Physiol Funct Imaging. 2017;37:276–81. doi: 10.1111/cpf.12296 EDN: YUUOAB
- Prikhodko VA, Selizarova NO, Okovityĭ SV. Molecular mechanisms for hypoxia development and adaptation to it. Part I. Russian Journal of Archive of Pathology. 2021;83(2):52–61. doi: 10.17116/patol20218302152 EDN: REJNHM
- Мartynov MU, Zhuravleva MV, Vasyukova NS, Kuznetsova EV, Kameneva TR. Oxidative stress in the pathogenesis of stroke and its correction. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(1):16–27. doi: 10.17116/jnevro202312301116 EDN: VPHPBW
- Chen L, Gao Y, Li Y, et al. Severe Intermittent Hypoxia Modulates the Macrophage Phenotype and Impairs Wound Healing Through Downregulation of HIF-2α. Nat Sci Sleep. 2022;14:1511–1520. doi: 10.2147/NSS.S382275
- Mallet RT, Burtscher J, Gatterer H, et al. Hyperoxia-enhanced intermittent hypoxia conditioning: mechanisms and potential benefits. Med Gas Res. 2024;14(3):127–129. doi: 10.4103/mgr.MEDGASRES-D-23-00046
- Burtscher J, Duderstadt Y, Gatterer H, et al. Hypoxia Sensing and Responses in Parkinson's Disease. Int J Mol Sci. 2024;25(3):1759. doi: 10.3390/ijms25031759
- Lei L, Feng J, Wu G, et al. HIF-1α Causes LCMT1/PP2A Deficiency and Mediates Tau Hyperphosphorylation and Cognitive Dysfunction during Chronic Hypoxia. Int J Mol Sci. 2022;23(24):16140. doi: 10.3390/ijms232416140
- Damgaard V, Mariegaard J, Lindhardsen JM, Ehrenreich H, Miskowiak KW. Neuroprotective Effects of Moderate Hypoxia: A Systematic Review. Brain Sci. 2023;13(12):1648. doi: 10.3390/brainsci13121648
- Elendu C, Amaechi DC, Elendu TC, et al. Stroke and cognitive impairment: understanding the connection and managing symptoms. Ann Med Surg (Lond). 2023;85(12):6057–6066. doi: 10.1097/MS9.0000000000001441
- Chen L, Ren SY, Li RX, et al. Chronic Exposure to Hypoxia Inhibits Myelinogenesis and Causes Motor Coordination Deficits in Adult Mice. Neurosci Bull. 2021;37(10):1397–1411. doi: 10.1007/s12264-021-00745-1
- Tuter DS, Kopylov PY, Syrkin AL, et al. Intermittent systemic hypoxic-hyperoxic training for myocardial protection in patients undergoing coronary artery bypass surgery: first results from a single-centre, randomised controlled trial. Open Heart. 2018;5(2):e000891. doi: 10.1136/openhrt-2018-000891
- Bayer U, Likar R, Pinter G, et al. Effects of intermittent hypoxia-hyperoxia on mobility and perceived health in geriatric patients performing a multimodal training intervention: a randomized controlled trial. BMC Geriatr. 2019;19(1):167. doi: 10.1186/s12877-019-1184-1
- Duderstadt Y, Schreiber S, Burtscher J, et al. Controlled Hypoxia Acutely Prevents Physical Inactivity-Induced Peripheral BDNF Decline. Int J Mol Sci. 2024;25(14):7536. doi: 10.3390/ijms25147536
- Li G, Guan Y, Gu Y, et al. Intermittent hypoxic conditioning restores neurological dysfunction of mice induced by long-term hypoxia. CNS Neuroscience & Therapeutics. 2023;29(1):202–215. doi: 10.1111/cns.13996
- Li G, Liu J, Guan Y, Ji X. The role of hypoxia in stem cell regulation of the central nervous system: From embryonic development to adult proliferation. CNS Neuroscience & Therapeutics. 2021;27(12):1446–1457. doi: 10.1111/cns.13754
- Wakhloo D, Scharkowski F, Curto Y, et al. Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin. Nat Commun. 2020;11(1):1313. doi: 10.1038/s41467-020-15041-1
- Khuu MA, Pagan CM, Nallamothu T, et al. Intermittent Hypoxia Disrupts Adult Neurogenesis and Synaptic Plasticity in the Dentate Gyrus. J Neurosci. 2019;39(7):1320-1331. doi: 10.1523/JNEUROSCI.1359-18.2018
- Yuan H, Liu J, Gu Y, Ji X, Nan G. Intermittent hypoxia conditioning as a potential prevention and treatment strategy for ischemic stroke: Current evidence and future directions. Front Neurosci. 2022;16:1067411. doi: 10.3389/fnins.2022.1067411
- Behrendt T, Bielitzki R, Behrens M, Glazachev OS, Schega L. Effects of Intermittent Hypoxia-Hyperoxia Exposure Prior to Aerobic Cycling Exercise on Physical and Cognitive Performance in Geriatric Patients — A Randomized Controlled Trial. Front Physiol. 2022;13:899096. doi: 10.3389/fphys.2022.899096
- Albrecht M, Zitta K, Groenendaal F, van Bel F, Peeters-Scholte C. Neuroprotective strategies following perinatal hypoxia-ischemia: Taking aim at NOS. Free Radic Biol Med. 2019;142:123–131. doi: 10.1016/j.freeradbiomed.2019.02.025
- Doehner W, Fischer A, Alimi B, et al. Intermittent Hypoxic-Hyperoxic Training During Inpatient Rehabilitation Improves Exercise Capacity and Functional Outcome in Patients With Long Covid: Results of a Controlled Clinical Pilot Trial. J Cachexia Sarcopenia Muscle. 2024;15(6):2781–2791. doi: 10.1002/jcsm.13628
- Glazachev OS, Geppe NA, Timofeev YuS, et al. Indicators of individual hypoxia resistance — a way to optimize hypoxic training for children. Russian Bulletin of Perinatology and Pediatrics. 2020;65(4):78–84. doi: 10.21508/1027-4065-2020-65-4-78-84 EDN: AKHVQE
- Ignatenko GA, Bagriy AE, Ignatenko TS, et al. Possibilities and Prospects of Hypoxytherapy Application in Cardiology. The Russian Archives of Internal Medicine. 2023;13(4):245–252. doi: 10.20514/2226-6704-2023-13-4-245-252. EDN: AHXHPL
Дополнительные файлы
