BACKWARD WALKING AS A NEW TECHNIQUE FOR PHYSICAL REHABILITATION


Cite item

Full Text

Abstract

Backward locomotion (backward walking and running) is increasingly used in sports and medicine. Kinetic and kinematic analysis of backward walking showed its advantages over the usual method of movement that can be successfully used in the athletic training and for treatment and rehabilitation after various diseases. During sports training backward walking/running can be used as one of the methods of fitness to improve physical endurance. Backward walking leads to a more cardiovascular and respiratory load and a more significant aerobic and anaerobic capacity of the organism compared with forward walking at similar parameters of physical activity. Backward walking is associated with less overload on knee joints, it is also one of the few natural ways of strengthening the quadriceps. Backward walking is used to elaborate the correct pattern of gait in children with cerebral palsy, in persons with hemiplegia after stroke, in patients suffering from Parkinson’s disease and multiple sclerosis, in spinal cord injured patients. Regular backward walking trainings improve spatial-temporal parameters of walking and balance, increase muscle strength of the lower limbs in these diseases. There is an information about the application of backward walking exercises in diabetic foot syndrome in order to reduce a plantar pressure and in physical rehabilitation of postoperative patients. Tests with backward walking are used for diagnostic purposes - to assess the severity of impaired coordination and motor skills in post-stroke patients and in Parkinson’s disease, to identify the minimal walking impairment in persons with multiple sclerosis and for probability of falling prediction in elderly individuals and patients with dizziness.

About the authors

Aleksey Viktorovich Klemenov

City Clinical Hospital № 30

Email: klemenov_av@list.ru
MD, PhD, DSc, consultant, City Clinical Hospital No. 30, Nizhny Novgorod Nizhny Novgorod, 603157, Russian Federation

References

  1. Terblanche E., Page C., Kroff J., Venter R.E. The effect of backward locomotion training on the body composition and cardiorespiratory fitness of young women. Int. J. Sports Med. 2005; 26(3): 214-9.
  2. Hoogkamer W., Meyns P., Duysens J. Steps forward in understanding backward gait: from basic circuits to rehabilitation. Exerc. Sport. Sci. Rev. 2014; 42(1): 23-9.
  3. Kachanathu S.J., Alenazi A.M., Algarni A.D., Hafez A.R., Hameed U.A., Nuhmani S. et al. Effect of forward and backward locomotion training on anaerobic performance and anthropometrical composition. J. Phys. Ther. Sci. 2014; 26(12): 1879-82.
  4. Hao W.Y., Chen Y. Backward walking training improves balance in school-aged boys. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2011; (3): 24.
  5. Cha H.G., Kim T.H., Kim M.K. Therapeutic efficacy of walking backward and forward on a slope in normal adults. J. Phys. Ther. Sci. 2016; 28(6): 1901-3.
  6. Viggiano D., Corona K., Cerciello S., Vasso M., Schiavone-Panni A. The kinematic control during the backward gait and knee proprioception: insights from lesions of the anterior cruciate ligament. J. Hum. Kinet. 2014; 41: 51-7.
  7. Ordway J.D., Laubach L.L., Vanderburgh P.M., Jackson K.J. The effects of backwards running training on forward running economy in trained males. J. Strength Cond. Res. 2016; 30(3): 763-7.
  8. Roos P.E., Barton N., van Deursen R.W. Patellofemoral joint compression forces in backward and forward running. J. Biomech. 2012; 45(9): 1656-60.
  9. El-Basatiny H.M., Abdel-Aziem A.A. Effect of backward walking training on postural balance in children with hemiparetic cerebral palsy: a randomized controlled study. Clin. Rehabil. 2015; 29(5): 457-67.
  10. Lee M., Kim J., Son J., Kim Y. Kinematic and kinetic analysis during forward and backward walking. Gait. Posture. 2013; 38(4): 674-8.
  11. Kim C.S., Gong W., Kim S.G. The effects of lower extremitiy muscle strengthening exercise and treadmill walking exercise on the gait and balance of stroke patients. J. Phys. Ther. Sci. 2011; 23(3): 405-8.
  12. Kim W.H., Kim W.B., Yun C.K. The effects of forward and backward walking according to treadmill inclination in children with cerebral palsy. J. Phys. Ther. Sci. 2016; 28(5): 1569-73.
  13. Soda N., Ueki T., Aoki T. Three-dimensional motion analysis of the ankle during backward walking. J. Phys. Ther. Sci. 2013, 25(6): 747-9.
  14. Whitley C.R., Dufek J.S. Effects of backward walking on hamstring flexibility and low back range of motion. Int. J. Exerc. Sci. 2011; 4: 192-8.
  15. Shigemori K., Nagino K., Nakamata E., Nagai E., Izuta M., Nishii M. et al. Motor learning in the community-dwelling elderly during nordic backward walking. J. Phys. Ther. Sci. 2014; 26(5): 741-3.
  16. Fritz N.E., Worstell A.M., Kloos A.D., Siles A.B., White S.E., Kegelmeyer D.A. Backward walking measures are sensitive to age-related changes in mobility and balance. Gait. Posture. 2013; 37(4): 593-7.
  17. Laufer Y. Effect of age on characteristics of forward and backward gait at preferred and accelerated walking speed. J. Gerontol. A. Biol. Sci. Med. Sci. 2005; 60(5): 627-32.
  18. Elboim-Gabyzon M., Rotchild S. Spatial and temporal gait characteristics of elderly individuals during backward and forward walking with shoes and barefoot. Gait. Posture. 2016; 52: 363-6.
  19. Lindemann U., Schwenk M., Klenk J., Kessler M., Weyrich M., Kurz F. et al. Problems of older persons using a wheeled walker. Aging Clin. Exp. Res. 2016; 28(2): 215-20.
  20. Cadenas-Sanchez C., Arellano R., Vanrenterghem J., López-Contreras G. Kinematic adaptations of forward and backward walking on land and in water. J. Hum. Kinet. 2015; 49: 15-24.
  21. Takao T., Tanaka N., Iizuka N., Saitou H., Tamaoka A., Yanagi H. Improvement of gait ability with a short-term intensive gait rehabilitation program using body weight support treadmill training in community dwelling chronic poststroke survivors. J. Phys. Ther. Sci. 2015; 27(1): 159-63.
  22. Meyns P., Molenaers G., Desloovere K., Duysens J. Interlimb coordination during forward walking is largely preserved in backward walking in children with cerebral palsy. Clin. Neurophysiol. 2014, 125(3): 552-61.
  23. Hösl M., Böhm H., Arampatzis A., Keymer A., Döderlein L. Contractile behavior of the medial gastrocnemius in children with bilateral spastic cerebral palsy during forward, uphill and backward-downhill gait. Clin. Biomech. 2016; 36: 32-9.
  24. Abdel-Aziem A.A., El-Basatiny H.M. Effectiveness of backward walking training on walking ability in children with hemiparetic cerebral palsy: A randomized controlled trial. Clin. Rehabil. 2017; 31(6): 790-7.
  25. Kim S.G., Ryu Y.U., Je H.D., Jeong J.H., Kim H.D. Backward walking treadmill therapy can improve walking ability in children with spastic cerebral palsy: a pilot study. Int. J. Rehabil. Res. 2013; 36(3): 246-52.
  26. Weng C.S., Wang J., Pan X.Y., Yu Z.Z., Wang G., Gao L.P. et al. Effectiveness of backward walking treadmill training in lower extremity function after stroke. Zhonghua. Yi. Xue. Za. Zhi. 2006; 86(37): 2635-8.
  27. Yang Y.R., Yen J.G., Wang R.Y., Yen L.L., Lieu F.K. Gait outcomes after additional backward walking training in patients with stroke: a randomized controlled trial. Clin. Rehabil. 2005; 19(3): 264-73.
  28. Lee K.B., Lee P., Yoo S.W., Kim Y.D. Reliability and validity of the Korean version of the community balance and mobility scale in patients with hemiplegia after stroke. J. Phys. Ther. Sci. 2016; 28(8): 2307-10.
  29. Michaelsen S.M., Ovando A.C., Romaguera F., Ada L. Effect of backward walking treadmill training on walking capacity after stroke: a randomized clinical trial. Int. J. Stroke. 2014; 9(4): 529-32.
  30. Kim K., Lee S., Lee K. Effects of progressive body weight support treadmill forward and backward walking training on stroke patients’ affected side lower extremity’s walking ability. J. Phys. Ther. Sci. 2014; 26(12): 1923-37.
  31. Kim C.Y., Lee J.S., Kim H.D. Comparison of the effect of lateral and backward walking training on walking function in patients with poststroke hemiplegia: a pilot randomized controlled trial. Am. J. Phys. Med. Rehabil. 2017; 96(2): 61-7.
  32. Peterson D.S., Pickett K.A., Duncan R.P., Perlmutter J.S., Earhart G.M. Brain activity during complex imagined gait tasks in Parkinson disease. Clin. Neurophysiol. 2014; 125(5): 995-1005.
  33. Christofoletti G., McNeely M.E., Campbell M.C., Duncan R.P., Earhart G.M. Investigation of factors impacting mobility and gait in Parkinson disease. Hum. Mov. Sci. 2016; 49: 308-14.
  34. Hackney M.E., Earhart G.M. The effects of a secondary task on forward and backward walking in Parkinson’s disease. Neurorehabil. Neural. Repair. 2010; 24(1): 97-106.
  35. Peterson D.S., Plotnik M., Hausdorff J.M., Earhart G.M. Evidence for a relationship between bilateral coordination during complex gait tasks and freezing of gait in Parkinson’s disease. Parkinsonism Relat. Disord. 2012; 18(9): 1022-6.
  36. Bloem B.R., Hausdorff J.M., Visser J.E., Giladi N. Falls and freezing of gait in Рarkinson’s disease: a review of two interconnected, episodic phenomena. Mov. Disord. 2004; 19(8): 871-84.
  37. Tseng I.J., Yuan R.Y., Jeng C. Treadmill training improves forward and backward gait in early Parkinson disease. Am. J. Phys. Med. Rehabil. 2015; 94(10): 811-9.
  38. Bryant M.S., Rintala D.H., Hou J.G., Collins R.L., Protas E.J. Gait variability in Parkinson’s disease: levodopa and walking direction. Acta Neurol. Scand. 2016; 134(1): 83-6.
  39. Giladi N., Hausdorff J.M. The role of mental function in the pathogenesis of freezing of gait in Parkinson’s disease. J. Neurol. Sci. 2006; 248(1-2):173-6.
  40. Yogev-Selgimann G., Hausdorff J.M., Giladi N. The Role of executive function and attention in gait. Mov. Disord. 2008; 23(3): 329-42.
  41. Melzer I., Oddsson L.I. The effect of a cognitive task on voluntary step execution in healthy elderly and young individuals. J. Am. Geriatr. Soc. 2004; 52(8): 1255-62.
  42. LaRocca N.G. Impact of walking impairment in multiple sclerosis: perspectives of patients and care partners. The Patient. 2011; 4(3): 189-201.
  43. Spain R.I., St. George R.J., Salarian A., Mancini M., Wagner J.M., Horak F.B. et al. Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed. Gait. Posture. 2012; 35(4): 573-8.
  44. Kalron A., Dvir Z., Achiron A. Walking while talking - difficulties incurred during the initial stages of multiple sclerosis disease process. Gait. Posture. 2010; 32(3): 332-5.
  45. Hamilton F., Rochester L., Paul L., Rafferty D., O’Leary C.P., Evans J.J. Walking and talking: an investigation of cognitive-motor dual tasking in multiple sclerosis. Mult. Scler. 2009; 15(10): 1215-27.
  46. Wajda D.A., Sandroff B.M., Pula J.H., Motl R.W., Sosnoff J.J. Effects of walking direction and cognitive challenges on gait in persons with multiple sclerosis. Mult. Scler. Int. 2013; 2013: 859323.
  47. Grasso R., Ivanenko Y.P., Zago M., Molinari M., Scivoletto G., Lacquaniti F. Recovery of forward stepping in spinal cord injured patients does not transfer to untrained backward stepping. Exp. Brain Res. 2004; 157(3): 377-82.
  48. Moriello G., Pathare N., Cirone C., Pastore D., Shears D., Sulehri S. Comparison of forward versus backward walking using body weight supported treadmill training in an individual with a spinal cord injury: a single subject design. Physiother. Theory Pract. 2014; 30(1): 29-37.
  49. Foster H., DeMark L., Spigel P.M., Rose D.K., Fox E.J. The effects of backward walking training on balance and mobility in an individual with chronic incomplete spinal cord injury: A case report. Physiother. Theory Pract. 2016; 32(7): 536-45.
  50. Chan K., Guy K., Shah G., Golla J., Flett H.M., Williams J. et al. Retrospective assessment of the validity and use of the community balance and mobility scale among individuals with subacute spinal cord injury. Spinal. Cord. 2016, 55(3): 294-9.
  51. de Lussanet M.H., Behrendt F., Puta C., Schulte T.L., Lappe M., Weiss T. et al. Impaired visual perception of hurtful actions in patients with chronic low back pain. Hum. Mov. Sci. 2013; 32(5): 938-53.
  52. Han D.B., Xu D.Q. Research progress on the biomechanics of backward walking. Chin. J. Rehabil. Med. 2011; 26: 990-3.
  53. Zhao H.B., Huo H.F., Zhang J., Jin F.X. Foot pressure and gait features during fitness backward walking of the elders. Chin. J. Rehabil. Med. 2010; 25: 435-8.
  54. Zhang X., Zhang Y., Gao X., Wu J., Jiao X., Zhao J. et al. Investigating the role of backward walking therapy in alleviating plantar pressure of patients with diabetic peripheral neuropathy. Arch. Phys. Med. Rehabil. 2014; 95(5): 832-9.
  55. Wnuk B.R., Durmała J., Ziaja K., Kotyla P., Woźniewski M., Błaszczak E. A Controlled trial of the efficacy of a training walking program in patients recovering from abdominal aortic aneurysm surgery. Adv. Clin. Exp. Med. 2016; 25(6): 1241-371.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».