Distribution features of carbon isotopes in carbonates on the example of the Sartiu Formation (Lower Carboniferous, Vorkuta Uplift)

Cover Page

Cite item

Full Text

Abstract

Research subject. The carbon and oxygen isotope composition of rock carbonates and brachiopod shells in the section of the upper part of the Sartiu Formation (Mississippian, Vorkuta uplift).Aim. Comparative evaluation of isotopic signal preservation in brachiopod shells and host rock on the example of strongly secondary altered sediments.Methods. Data on foraminifera, conodonts, and brachiopods formed the stratigraphic framework. Carbon and oxygen isotope analyses of carbonates of brachiopod shells and host rock, accompanied by screening tests, were determined for 76 samples from 35 levels within the upper part of the Serpukhovian Stage. Data on carbonate recrystallisation, organic carbon content, carbon-oxygen isotope ratio, cathodoluminescence, and taxonomic affiliation of brachiopods were used for screening.Results. The data on carbon isotope composition showed significant differences in isotopic signals in brachiopod shells and in the host rock. The lower part of the section (approximately 4.3 m) is characterized by a heavying of the carbon isotopic composition of the shell material from 2.0 to 4.1‰. Higher up the section (next 2.5 m), a sharp increase in δ13C up to 7.3‰ is observed (sample with Davidsonina carbonaria) followed by a decrease to 3.4‰ and then a scatter of values from 1.2 to 6‰ in the uppermost part. At the same time, the carbon isotope composition of limestones shows rather stable values along the entire section (from –0.2 to 2.6‰, mean value 1.0‰), showing a slight negative trend towards the upper part. According to the screening tests, all limestone samples show a highly altered signal by secondary processes; however, brachiopod shell carbonate is assumed to have a near-primary isotopic composition. At the same time, the isotopic composition of brachiopod shells strongly depends on taxonomic affiliation. In representatives of the Davidsonina genus, a significant (by 4–6‰) heavying of the carbon isotopic composition was noted. The average δ18O values of limestones are 21.3‰ SMOW (corresponding to –9.3‰ PDB) and brachiopod shells 22.2‰ (corresponding to –8.4‰ PDB), which rules out the primary nature of oxygen isotopic composition.Conclusions. The studied material showed good preservation of the isotopic signal in brachiopod shells even in the case of significant recrystallisation of the host carbonates. The significant vital effect characteristic of representatives of the Davidsonina genus makes it difficult to use isotopic data obtained from these brachiopod shells for the purposes of isotopic stratigraphy. For correct isotopestratigraphic interpretation of variations in carbon isotope composition in sections, taxonomically homogeneous samples within at least one genus should be studied.

About the authors

A. V. Erofeevsky

N.P. Yushkin Institute of Geology, FRC Komi SC UB RAS

Email: averofeevsky@geo.komisc.ru

A. N. Plotitsyn

N.P. Yushkin Institute of Geology, FRC Komi SC UB RAS

Email: anplotitzyn@rambler.ru

A. V. Zhuravlev

N.P. Yushkin Institute of Geology, FRC Komi SC UB RAS

Ya. A. Vevel

N.P. Yushkin Institute of Geology, FRC Komi SC UB RAS

R. M. Ivanova

A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS

Email: geoivanur@mail.ru

References

  1. Богуш О.И., Иванова Р.М., Лучинина В.А. (1990) Известковые водоросли верхнего фамена и нижнего карбона Урала и Сибири. Новосибирск: Наука, сиб. отд., 160 с.
  2. Виноградов В.И. (2005) Отражение глобальных изменений природной среды в изотопных характеристиках осадочных пород. Биосфера–экосистема–биота в прошлом Земли: палеобиогеографические аспекты. К 100-летию со дня рождения академика В.В. Меннера. Тр. Геол. ин-та РАН, вып. 516, 433-466.
  3. Груздев Д.А. (2021) Позднедевонско-раннекаменноугольные изолированные карбонатные платформы на севере Урала и Пай-Хоя. Вестн. геонаук, (10), 3-15.
  4. Дмитриева Е.В., Ершова Г.И., Либрович В.Л., Некрасова В.И., Орешникова Е.И. (1968) Атлас текстур и структур осадочных горных пород. Ч. 2. Карбонатные породы. М.: Недра, 700 с.
  5. Журавлев А.В. (2003) Конодонты верхнего девона – нижнего карбона северо-востока Европейской России. СПб.: Изд-во ВСЕГЕИ, 85 с.
  6. Журавлев А.В. (2017) Оценка степени термального катагенеза палеозойских отложений севера Пай-Хойского паравтохтона по индексам окраски конодонтов. Литосфера, (1), 44–52.
  7. Иванова Е.А. (1971) Введение в изучение спириферид. Тр. ПИН. Т. 126. М.: Наука, 105 с.
  8. Иванова Е.А. (1975) Некоторые Spiriferinidina Подмосковного бассейна. Палеонтол. журн., (2), 79-88.
  9. Иванова Р.М., Степанова Т.И. (2021) Альгофлора и микрофации нижнего карбона Урала и прилегающих территорий. Екатеринбург: РИО УрО РАН, 264 с.
  10. Калашников Н.В. (1963) О роде Davidsonina из карбона Северного Урала. Палеонтол. журн., (2), 43–53.
  11. Калашников Н.В. (1974) Раннекаменноугольные брахиоподы Печорского Урала. Л.: Наука, 220 с.
  12. Полетаев В.И. (2018) Атлас определитель каменноугольных спириферид Восточной Европы. Киев: Нац. Ак. наук Украины, Ин-т геол. наук, 408 с.
  13. Стратиграфические схемы Урала (докембрий, палеозой). (1993) Межвед. Страт. Комитет России. Екатеринбург: ИГГ УрО РАН, Уралгеолком, 151 л.
  14. Тимонин Н.И. (1998) Печорская плита: история геологического развития в фанерозое. Екатеринбург: УрО РАН, 238 с.
  15. Шишкин М. А., Малых О.Н., Попов П.Е., Колесник Л.С. (2013) Государственная геологическая карта РФ м-ба 1:200 000 листа Q-41-V, VI (второе издание). М.: МФ ВСЕГЕИ, Мин-во природных ресурсов РФ, ЗАО “МИРЕКО”.
  16. Эрлангер О.А. (1987) Микроструктура стенки раковины спириферид рода Davidsonina. Палеонтол. журн., (1), 124-128.
  17. Юдин В.В. (1994) Орогенез Севера Урала и Пай-Хоя. Екатеринбург: УИФ “Наука”, 284 с.
  18. Янишевский М.Э. (1926) Материалы к познанию палео- зойской фауны Новой Земли. Тр. Геол. и минерал. музея АН, 5(4), 73-116.
  19. Al-Assam I., Veizer J. (1982) Chemical Stabilization of Low-Mg Calcite: An Example of Brachiopods. SEPM J. Sediment. Res., 52, 1101-1109.
  20. Al-Husseini M., Ruebsam W. (2020) Ch. 2. Interpreting Phanerozoic δ13C patterns as periodic glacio-eustatic sequences. Stratigraphy and Timescales 5. Cambridge, Academic Press, 41-105. https://doi.org/10.1016/bs.sats.2020.08.005
  21. Angiolini L., Stephenson M., Leng M. J., Jadoul F., Millward D., Aldridge A., Andrews J., Chenery S., Williams G. (2011) Heterogeneity, cyclicity and diagenesis in a Mississippian brachiopod shell of palaeoequatorial Britain. Terra Nova, 24(1), 16-26.
  22. Armendariz M., Rosales I., Quesada C. (2008) Oxygen isotope and Mg/Ca composition of Late Visean (Mississippian) brachiopod shells from SW Iberia: Palaeoclimatic and palaeogeographic implications in northern Gondwana. Palaeogeogr., Palaeoclimatol., Palaeoecol., 268(1-2), 65-79.
  23. Barbin V. (2000) Cathodoluminescence of Carbonate Shells: Biochemical vs Diagenetic Process. Cathodoluminesc in Geosciences. Berlin, Heidelberg, Springer, 303-329. https://doi.org/10.1007/978-3-662-04086-7_12
  24. Barbin V., Gaspard D. (1995) Cathodoluminescence of recent articulate brachiopod shells. Implications for growth stages and diagenesis evaluation. Geobios, (18), 39-45.
  25. Brand U. (1989) Biogeochemistry of Late Paleozoic North American brachiopods and secular variation of seawater composition. Biogeochemistry, 7(3), 159-193.
  26. Brand U., Legrand-Blain M. (1993) Paleoecology and biogeochemistry of brachiopods from the Devonian –Carboniferous boundary interval of the Griotte Formation, La Serre, Montagne Noire, France. Ann. Soc. Geol. Belg., (115), 497-505.
  27. Brand U., Jiang G., Azmy K., Bishop J., Montañez I.P. (2012) Diagenetic evaluation of a Pennsylvanian carbonate succession (Bird Spring Formation, Arrow Canyon, Nevada, U.S.A.) – 1: Brachiopod and whole rock comparison. Chem. Geol., 308-309, 26-39. https://doi.org/10.1016/j.chemgeo.2012.03.017
  28. Brand U., Logan A., Bitner M., Griesshaber E., Azmy K., Buhl D. (2011) What is the ideal proxy of Paleozoic seawater chemistry? Memoirs Assoc. Australas. Palaeontol., (41), 9-24.
  29. Buening N. (2001) Brachiopod Shells: Recorders of the Present and Keys to the Past. Paleontol. Soc. Pap., 7, 117-144. https://doi.org/10.1017/S1089332600000930
  30. Carter J., Johnson J., Gourvennec R., Hong-fei H. (1994) A revised classification of the spiriferid brachiopods. Ann. Carnegie Museum, 63(4), 327-374.
  31. Chen J., Montañez I.P., Qi Y., Wang X., Wang Q., Lin W. (2016) Coupled sedimentary and δ13C records of late Mississippian platform-to-slope successions from South China: Insight into δ13C chemostratigraphy. Palaeogeogr., Palaeoclimatol., Palaeoecol., 448, 162-178.
  32. Czerniakowski L., Lohmann K., Wilson J. (1984) Closedsystem marine burial diagenesis: isotopic data from the Austin Chalk and its components. Sedimentology, 31(6), 863-877. https://doi.org/10.1111/j.1365-3091.1984.tb00892.x
  33. Garbelli C., Angiolini L., Brand U., Jadoul F. (2014) Brachiopod fabric, classes and biogeochemistry: implications for the reconstruction and interpretation of seawater carbon-isotope curves and records. Chem. Geol., 371, 60-67.
  34. Grossman E.L., Mii H.S., Zhang C.L., Yancey T.E. (1996) Chemical variation in Pennsylvanian brachiopod shells Diagenetic, taxonomic, microstructural, and seasonal effects. J. Sediment. Res., 66(5) (Pt A), 1011-1022.
  35. Grossman E.L., Zhang C., Yancey T.E. (1991) Stable-isotope stratigraphy of brachiopods from Pennsylvanian shales in Texas. Geol. Soc. Amer. Bull., 103, 953-965.
  36. Gröcke D.R. (2020) Ch. 1. Carbon isotope stratigraphy: Principles and applications. Stratigraphy and Timescales 5. Cambridge, Academic Press, 1-40. https://doi.org/10.1016/bs.sats.2020.08.002
  37. Hammer Ø., Harper D.A.T., Ryan P.D. (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
  38. Harris A.G., Sweet W.C. (1989) Mechanical and chemical techniques for separating microfossils from rock. Sediment and residue matrix. Paleotechniques (Eds R.M. Feldmann, R.E. Chapman, J.T. Hannibal). (Paleontol. Soc. Spec. Publ., 4, 70-86).
  39. Hayes J.M., Strauss H., Kaufman A.J. (1999) The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 161, 103-125. https://doi.org/10.1016/S0009-2541(99)00083-2
  40. Huck S., Wohlwend S., Coimbra R., Christ N., Weissert H. (2017) Disentangling shallow water bulk carbonate carbon isotope archives with evidence for multi stage diagenesis: An in depth component specific petrographic and geochemical study from Oman (mid Cretaceous). Dep. Record, 3(2), 233-257. https://doi.org/10.1002/dep2.35
  41. Immenhauser A., Della Porta G., Kenter J.A.M., Bahamonde J.R. (2003) An alternative model for positive shifts in shallow marine carbonate δ13C and δ18O. Sedimentology, 50, 953-959. https://doi.org/10.1046/j.1365-3091.2003.00590.x
  42. Jenkins T.B.H., Crane D.T., Mory A.J. (1993) Conodont biostratigraphy of the Visean Series in eastern Australia. Alcheringa. Australas. J. Palaeontol., 17(3), 211-283. 10.1080/03115519308619605
  43. Jones G.L. (1992) Irish Carboniferous conodonts record maturation levels and the influence of tectonisn, igneous activity and mineralization. Terra Nova, 4(4), 238-244.
  44. Jope H.M. (1965) Composition of brachiopod shell. Treatise on Invertebrate Paleontology. Pt H, Brachiopoda. Geological Society of America & University of Kansas Press. New York & Lawrence. (1), 156-164.
  45. Killingley J.S. (1983) Effects of diagenetic recrystallization on 18O/16O values of deep-sea sediments. Nature, 301(5901), 594-597. 10.1038/301594a0
  46. Lee X., Wan G. (2000) No vital effect on δ18O and δ13C values of fossil brachiopod shells. Middle Devonian of China. Geochim. Cosmochim. Acta, 64(15), 2649-2664.
  47. Lohmann K.C. (1988) Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. Paleokarst. Berlin, Springer, 58-80.
  48. Lowenstam H.A. (1961) Mineralogy, 18O/16O ratios, and strontium and magnesium contents of recent and fossil brachiopods and their bearing on the history of the oceans. J. Geol., 69, 241-260.
  49. McConnaughey T.A., Burdett J., Whelan J.F., Paull C.K. (1997) Carbon isotopes in biological carbonates: Respiration and photosynthesis. Geochim. Cosmochim. Acta, 61(3), 61l-622. Mii H., Grossman E. (1994) Late Pennsylvanian seasonality reflected in the 180 and elemental composition of a brachiopod shell. Geology, 22, 661-664.
  50. Mii H., Grossman E.L., Yancey T.E. (1997) Stable carbon and oxygen isotope shifts in Permian seas of West Spitsbergen – global change or diagenetic artifacts. Geology, 25, 227-230.
  51. Mii H., Grossman E.L., Yancey T.E. (1999) Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation. Geol. Soc. Amer. Bull., 111(7), 960-973. https://doi.org/10.1130/0016-7606(1999)111%3C0960:CI SONA%3E2.3.CO;2
  52. Mii H.S., Grossman E.L., Yancey T.E., Chuvashov B., Egorov A. (2001) Isotopic records of brachiopod shells from the Russian Platform evidence for the onset of mid Carboniferous glaciation. Chem. Geol., 175(1-2), 133-147.
  53. Pagel M., Barbin V., Blanc P., Ohnenstetter D. (2000) Cathodoluminescence in Geosciences: An Introduction. Cathodoluminescence in Geosciences. Berlin, Heidelberg, Springer, 1-21. https://doi.org/10.1007/978-3-662-04086-7_1
  54. Popp B.N., Anderson T.F., Sandberg P.A. (1986) Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. GSA Bull., 97, 1262-1269.
  55. Qie W., Zhang X.H., Du Y.S., Zhang Y. (2011) Lower Carboniferous carbon isotope stratigraphy in South China: Implications for the Late Paleozoic glaciation. Sci. China Earth Sci., 54, 84-92. https://doi.org/10.1007/s11430-010-4062-4
  56. Rush P.F., Chafetz H.S. (1990) Fabric-retentive, non-luminescent brachiopods as indicators of original δ13C and δ18O composition: A test. J. Sediment. Petrol., 60, 968-981.
  57. Saltzman M.R. (2002) Carbon and oxygen isotope stratigraphy of the Lower Mississippian (Kinderhookian–lower Osagean), western United States: Implications for seawater chemistry and glaciation. Geol. Soc. Amer. Bull., 114, 96-108.
  58. Saltzman M.R., Groessens E., Zhuravlev A. (2004) Carbon cycle models based on extreme changes in δ13C: An example from the Lower Mississippian. Palaeogeogr., Palaeoclimatol., Palaeoecol., 213, 359-377. https://doi.org/10.1016/S0031-0182(04)00389-X
  59. Saltzman M.R., Thomas, E. (2012) Carbon isotope stratigraphy. Geol. Time Scale, 207-232. https://doi.org/10.1016/B978-0-444-59425-9.00011-1
  60. Samtleben C., Munnecke A., Bickert T., Pätzold J. (2001) Shell succession, assemblage and species dependent effects on C/O-isotopic composition of brachiopods–Examples from the Silurian of Gotland. Chem. Geol., 175, 61-107.
  61. Scholle P.A., Arthur M.A. (1980) Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool. Amer. Assoc. Petrol. Geol. Bull., 64, 67-87.
  62. Tomašových A., Farkaš J. (2005) Cathodoluminescence of Late Triassic terebratulid brachiopods: implications for growth patterns. Palaeogeogr., Palaeoclimatol., Palaeoecol., 216(3-4), 215-233. https://doi.org/10.1016/j.palaeo.2004.11.010
  63. Van Geldern R., Joachimski M.M., Day J., Jansen U., Alvarez F., Yolkin E.A., Ma X.P. (2006) Carbon, oxygen and strontium isotope records of Devonian brachiopod shell calcite. Palaeogeogr., Palaeoclimatol., Palaeoecol., 240(1-2), 47-67.
  64. Veizer J., Ala D., Azmy K., Bruckschen P., Buhl D., Bruhn F., Carden G.A.F., Diener A., Ebneth S., Godderis Y., Jasper T., Korte C., Pawellek F., Podlaha O.G., Strauss H. (1999) Sr-87/Sr-86, delta C-13 and delta O-18 evolution of Phanerozoic seawater. Chem. Geol., 161(1-3), 59-88. https://doi.org/10.1016/S0009-2541(99)00081-9
  65. Wefer, G., Berger W.H. (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar. Geol., 100, 207-248.
  66. Zhuravlev A.V., Plotitsyn A.N., Gruzdev D.A., Smoleva I.V. (2020) Ch. 9. Carbon isotope stratigraphy of the Tournaisian (Lower Mississippian) successions of NE Europe. Carbon Isotope Stratigraphy. Stratigraphy and Timescales 5. Cambridge, Academic Press, 467-528.
  67. Zhuravlev A.V., Vevel Y.A., Gruzdev D.A., Erofeevsky A.V. (2023) Late Mississippian (early Serpukhovian) carbon isotope record of northern Laurussia: A proposal for the Viséan/ Serpukhovian boundary. Revista Mexicana de Ciencias Geológicas, 40(1), 35-43.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Erofeevsky A.V., Plotitsyn A.N., Zhuravlev A.V., Vevel Y.A., Ivanova R.M.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».