Peculiarities of Fe penetration into the matrix of CaCO3 ± olivine ± serpentine at a pressure of 4 GPa and temperature of 1400-1500°C (experimental data)
- Authors: Sonin V.M.1, Zhimulev E.I.1, Chepurov A.A.1, Turkin A.I.1, Chepurov A.I.1
-
Affiliations:
- V.S. Sobolev Institute of Geology and Mineralogy, SB RAS
- Issue: Vol 23, No 4 (2023)
- Pages: 491-499
- Section: Articles
- URL: https://journal-vniispk.ru/1681-9004/article/view/311136
- DOI: https://doi.org/10.24930/1681-9004-2023-23-4-491-499
- ID: 311136
Cite item
Full Text
Abstract
About the authors
V. M. Sonin
V.S. Sobolev Institute of Geology and Mineralogy, SB RAS
Email: sonin@igm.nsc.ru
E. I. Zhimulev
V.S. Sobolev Institute of Geology and Mineralogy, SB RAS
A. A. Chepurov
V.S. Sobolev Institute of Geology and Mineralogy, SB RAS
A. I. Turkin
V.S. Sobolev Institute of Geology and Mineralogy, SB RAS
A. I. Chepurov
V.S. Sobolev Institute of Geology and Mineralogy, SB RAS
References
- Артемов В.Р., Кузнецова В.Н. (1976) Классификация серпентинов. вопросы методики поисков, разведки и промышленной оценки месторождений хризотил-асбеста. Свердловск: Уральск. территор. геол. упр., 38-54.
- Варлаков А.С. (1986) Петрология процессов серпентинизации гипербазитов складчатых областей. Свердловск: УНЦ АН СССР, 224 с.
- Добрецов Н.Л. (2010) Петрологические, геохимические и геодинамические особенности субдукционного магматизма. Петрология, 18(1), 84-106.
- Жимулев Е.И., Сонин В.М., Чепуров А.А., Чепуров А.И., Похиленко Н.П. (2022) Детализация взаимодействия СаСО3 с Fe при 4 ГПа и 1400-1500°C. Докл. АН, 506(1), 38-42. https://doi.org/10.31857/S2686739722600576
- Кочержинский Ю.А., Кулик О.Г., Туркевич В.З., Ивахненко С.А., Чипенко Г.В., Черепенина Е.С., Крючкова А.Р. (1992) Фазовые равновесия в системе железо-углерод при высоких давлениях. Сверхтвердые материалы, (6), 3-9.
- Мартиросян Н.С., Литасов К.Д., Шацкий А.Ф., Отани Э. (2015) Исследование реакций железа с карбонатом кальция при 6 ГПа и 1273-1873 К и их роль при восстановлении карбонатов в мантии Земли. Геология и геофизика, 56(9), 1681-1692. https://doi.org/10.15372/GiG20150908
- Чепуров А.И., Сонин В.М., Жимулев Е.И., Чепуров А.А., Томиленко А.А. (2011) Об образовании элементного углерода при разложении СаСО3 в восстановительных условиях при высоких Р-Т параметрах. Докл. АН, 441(6), 806-809.
- Чепуров А.И., Томиленко А.А., Жимулев Е.И., Сонин В.М., Чепуров А.А., Сурков Н.В., Ковязин С.В. (2010) Проблема воды в верхней мантии: разложение антигорита. Докл. АН, 434(3), 391-394.
- Чепуров А.И., Томиленко А.А., Жимулев Е.И., Сонин В.М., Чепуров А.А., Ковязин С.В., Тимина Т.Ю., Сурков Н.В. (2012) Консервация водного флюида во включениях в минералах и межзерновом пространстве при высоких Р-Т параметрах в процессе разложения антигорита. Геология и геофизика, 53(3), 305-320.
- Chepurov A., Zhimulev E., Chepurov A., Sonin V. (2021) Where did the largest diamonds grow? The experiments on percolation of Fe-Ni melt through olivine matrix in the presence of hydrocarbons. Lithos, 404-405, 106437-10. https://doi.org/10.1016/j.lithos.2021.106437
- Clift P.D. (2017) A revised budget for Cenozoic sedimentary carbon subduction. AGU Rev. Geophys., 55, 97-125. https://doi.org/10.1002/2016RG000531
- Gromilov S., Chepurov A., Sonin V., Zhimulev E., Sukhikh A., Chepurov A., Shcheglov D. (2019) Formation of two crystal modifications of Fe7C3-x at 5.5 GPa. J. Appl. Cryst., 52, 1378-1384. https://doi.org/10.1107/S1600576719013347
- Huang R., Sun W., Ding X., Zhao Y., Song M. (2020) Effect of pressure on the kinetics of peridotite serpentinization. Phys. Chem. Miner., 47, 33. https://doi.org/10.1007/s00269-020-01101-x
- Irving A.J., Wyllie P.J. (1975) Subsolidus and melting relations for calcite, magnesite and join CaCO3-MgCO3 to 36 kb. Geochim. Cosmochim. acta, 39(1), 35-53.
- Koster van Groos A.F. (1982) High pressure differential analysis in the system CaO-CO2-H2O. Amer. Miner., 67, 234-237.
- Li Z., Li J., Lange R., Liu J., Militzer B. (2017) Determination of calcium carbonate and sodium carbonate melting curves up to Earth's transition zone pressures with implication for the deep carbon cycle. Earth Planet. Sci. lett., 457, 395-402. https://doi.org/10.1016/j.epsl.2016.10.027
- Liu Y., Chen C., He D., Chen W. (2019) Deep carbon cycle in subduction zones. Sci. China. Earth Sci., 62, 1764-1782. https://doi.org/10.1007/s11430-018-9426-1
- Martirosyan N.S., Litasov K.D., Shatskiy A., Ohtani E. (2015) The reactions between iron and magnesite at 6 GPa and 1273-1873 K: Implication to reduction of subducted carbonate in the deep mantle. J. Miner. Petrol. Sci., 110, 49-59. https://doi.org/10.2465/jmps.141003a
- Martirosyan N.S., Yoshino T., Shatskiy A., Chanyshev A.D., Litasov K.D. (2016) The CaCO3-Fe interaction: Kinetic approach for carbonate subduction to the deep Earth's mantle. Phys. Earth Planet. Inter., 259, 1-9. https://doi.org/10.1016/j.pepi.2016.08.008
- Martirosyan N.S., Shatskiy A., Chanyshev A.D., Litasov K.D., Podborodnikov I.V., Yoshino T. (2019) Effect of water on magnesite-iron interaction, with implications for the fate of carbonates in the deep mantle. Lithos, 326-327, 435-445. https://doi.org/10.1016/j.lithos.2019.01.004
- McCammon C., Bureau H., Cleaves H.J. II, Cottrell E., Dorfman S.M., Kellogg L.H., Li J., Mikhail S., Moussallam Y., Sanloup C., Thomson A.R., Vitale Brovarone A. (2020) Deep Earth carbon reactions through time and space. Amer. Miner., 105, 22-27. https://doi.org/10.2138/am-2020-6888CCBY
- Palyanov Yu.N., Bataleva Yu.V., Sokol A.G., Borzdov Yu.N., Kupriyanov I.N., Reutsky V.N., Sobolev N.V. (2013) Mantle-slab interaction and redox mechanism of diamond formation. PNAS, 110(51), 20408-13. https://doi.org/10.1073/pnas.1313340110
- Poli S., Schmidt M.W. (1995) H2O transport and release in subduction zones - experimental constraints on basaltic and andesitic systems. J. Geophys. Res., 100, 22299-314.
- Rohrbach A., Schmidt M.W. (2011) Redox freezing and melting in Earth's deep mantle resulting from carboniron redox coupling. Nature, 472, 209-214. https://doi.org/10.1038/nature09899
- Stagno V., Frost D.J. (2010) Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at carbonate-bearing melts coexist with graphite or diamonds in peridotite assemblages. Earth Planet. Sci. Lett., 300, 72-84. https://doi.org/10.1016/j.epsl.2010.09.038
- Stagno V., Frost D.J., McCammon C.A., Mohseni H., Fei Y. (2015) The oxygen fugacity at which graphite or diamond forms from carbonate-bearing melts in eclogitic rocks. Contrib. Miner. Petrol., 169:16. https://doi.org/10.1007/s00410-015-1111-1
- Suito K., Namba J., Horikawa T., Taniguchi Y., Sakura N., Kobayashi M., Onodera A., Shimomura O., Kikegawa T. (2001) Phase relations of CaCO3 at high pressure and temperature. Amer. Miner., 86(9), 997-1002.
- Ulmer P., Trommsdorff V. (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science, 268, 858-861.
- Weidendorfer D., Manning C.E., Schmidt M.W. (2020) Carbonate melts in the hydrous upper mantle. Contrib. Miner. Petrol., 175, 72-17. https://doi.org/10.1007/s00410-020-01708-x
- Whittaker E.J.W., Zussman J. (1956) The characterization of serpentine minerals X-ray diffraction. Miner. Mag., 31, 107-126.
- Wicks F.J., Zussman J. (1975) Microbeam X-ray diffraction patterns of the serpentine minerals. Canad. Miner., 13, 244-258.
- Wunder B., Schreyer W. (1997) Antigorite: high-pressure stability in the system MgO-SiO2-H2O (MSH). Lithos, 41, 213-227.
- Wyllie P.J., Boettcher A.L. (1969) Liquidus phase relationships in the system CaO-CO2-H2O to 40 kilobars pressures with petrological applications. amer. J. Sci., 267-A, 489-508.
- Zhao S., Schettino E., Merlini M., Poli S. (2019) The stability and melting of aragonite: An experimental and thermodynamic model for carbonated eclogites in the mantle. Lithos, 324-325, 105-114. https://doi.org/10.1016/j.lithos.2018.11.005
- Zhimulev E.I., Chepurov A.I., Sonin V.M., Litasov K.D., Chepurov A.A. (2018) Experimental modeling of percolation of molten iron through polycrystalline olivine matrix at 2.0-5.5 GPa and 1600°C. High Pressure Res., 38, 153-164. https://doi.org/10.1080/08957959.2018.1458847
Supplementary files
