Origin of potassium-bearing tourmalines of the Kumdy-Kolsky deposit (Kokchetav massif, Northern Kazakhstan): Study of Mineral inclusions

Capa

Citar

Texto integral

Resumo

Research subject. Mineral inclusions in potassium-bearing tourmaline crystals of the Kumdy-Kol microdiamond deposit. Aim. To reconstruct PT conditions for the origin of potassium-bearing tourmalines. Materials and methods. Mineral analysis and element mapping were performed using an X-ray spectral microanalyzer. Raman spectroscopy was used to detect the C and SiO2 polymorphs. Results. For the first time, diamond inclusions were identified in tourmalines with the potassium content ranging from 1.0 to 1.6 wt %. In addition, diamond-bearing zircon was detected in tourmaline crystals, with the K2O content below the detection limit. Previously, diamond inclusions had been exclusively identified only within the most potassium-rich cores of tourmaline crystals, which were approved as a new end member referred to as maruyamaite. Similar to the previous studies, the Kfs inclusions were recognized in both marumaite crystals and tourmaline crystals, with a variable content of potassium. Conclusions. The obtained findings indicate that high-pressure conditions may not be necessary for the formation of potassium-rich tourmaline. The chemical composition of the fluid is most likely to be the main factor controlling the appearance of tourmalines with an unusual composition.

Sobre autores

A. Korsakov

V.S. Sobolev Institute of Geology and Mineralogy, SB RAS

Email: korsakov@igm.nsc.ru

K. Musiyachenko

V.S. Sobolev Institute of Geology and Mineralogy, SB RAS; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia

D. Mikhailenko

V.S. Sobolev Institute of Geology and Mineralogy, SB RAS

S. Demin

V.S. Sobolev Institute of Geology and Mineralogy, SB RAS

Bibliografia

  1. Добрецов Н.Л., Буслов М.М., Жимулев Ф.И., Травин А.В., Заячковский А.А. (2006) Венд-раннеордовикская геодинамическая эволюция и модель эксгумации пород сверхвысоких и высоких давлений Кокчетавской субдукционно-коллизионной зоны. Геология и геофизика, 47(4), 428-444.
  2. Жимулев Ф.И., Полтаранина М.А., Корсаков А.В., Буслов М.М., Друзяка Н.В., Травин А.В. (2010) Структурное положение и петрология эклогитов позднекембрийско-раннеордовикской северо-кокчетавской тектонической зоны (Северный Казахстан). Геология и геофизика, 51(2), 240-256.
  3. Корсаков А.В., Михайленко Д.С., Чжан Л., Шу Ю. (2023a) Включения кристаллов алмаза в турмалине шерл-увитового ряда: проблемы генезиса. Зап. Горного ин-та, 261, 1-9. https://doi.org/10.31897/PMI.2023.18
  4. Корсаков А.В., Травин А.В., Юдин Д.С., Маршал Х.Р. (2009) Турмалин как 40Ar/39Ar геохронометр на примере метаморфических пород Кокчетавского массива (Казахстан). Докл. РАН, 424, 531-533.
  5. Корсаков А.В., Шацкий В.С., Соболев Н.В. (1998) Первая находка коэсита в эклогитах Кокчетавского массива. Докл. РАН, 360, 77-81.
  6. Корсаков А.В., Юдин Д.С., Мусияченко К.А., Демин С.П. (2023б) 40Ar/39Ar датирование маруямаита (калийсодержащего турмалина) из алмазоносных пород Кокчетавского массива. Геодинамика и тектонофизика, 14(3). https://doi.org/10.5800/GT-2023-14-3-0699
  7. Лаврентьев Ю.Г., Карманов Н.С., Усова Л.В. (2015) Электронно-зондовое определение состава минералов: микроанализатор или сканирующий электронный микроскоп? Геология и геофизика, 56(8), 1473-1482.
  8. Лаврова Л.Д., Печников В.А., Петрова М.А., Заячковский А.А. (1996) Геология Барчинской алмазоносной площади. Отеч. геология, (12), 20-27.
  9. Лаврова Л.Д., Печников В.А., Плешаков А.М., Надеждина Е.Д., Шуколюков Ю.А. (1999) Новый генетический тип алмазных месторождений. М.: Научный мир, 221 с.
  10. Летников Ф.А. (1983) Образование алмазов в глубинных тектонических зонах. Докл. АН СССР, 271, 433-435.
  11. Мусияченко К.А., Корсаков А.В., Летников Ф.А. (2021) Новое проявление маруямаита. Докл. РАН, 498, 58-65.
  12. Розен О.М., Зорин Ю.М., Заячковский А.А. (1972) Обнаружение алмаза в связи с эклогитами в докембрии Кокчетавского массива. Докл. АН СССР, 203, 674-676.
  13. Сафонов О.Г. (2007) Модели эволюции глубинных щелочных жидкостей. Дис. ... канд. геол.-мин. наук. М., 403 с.
  14. Соболев Н.В., Шацкий В.С. (1987) Включения минералов углерода в гранатах метаморфических пород. Геология и геофизика, 28(7), 77-80.
  15. Соболев Н.В., Шацкий В.С., Вавилов М.А., Горяйнов С.В. (1991) Включение коэсита в цирконе алмазосодержащих гнейсов Кокчетавского массива - первая находка коэсита в метаморфических породах на территории СССР. Докл. АН СССР, 321, 184-188.
  16. Соболев Н.В., Шацкий В.С., Вавилов М.А., Горяйнов С.В. (1994) Циркон высокобарических метаморфических пород складчатых областей как уникальный контейнер включений алмаза, коэсита и сосуществующих минералов. Докл. РАН, 334, 488-492.
  17. Angel R.J., Mazzucchelli M.L., Alvaro M., Nimis P., Nestola F. (2014) Geobarometry from host-inclusion systems: The role of elastic relaxation. Amer. Miner., 99, 2146-2149.
  18. Berryman E.J., Wunder B., Wirth R., Rhede D., Schettler G., Franz G., Heinrich W. (2015) An experimental study on K and Na incorporation in dravitic tourmaline and insight into the origin of diamondiferous tourmaline from the Kokchetav Massif, Kazakhstan. Contrib. Mineral. Petrol., 169, 28. https://doi.org/10.1007/s00410-015-1116-9
  19. Berryman E., Wunder B., Rhede D. (2014) Synthesis of K-dominant tourmaline. Amer. Miner., 99, 539-542.
  20. Borghini A., Ferrero S., O'Brien P.J., Laurent O., Gunter C., Ziemann M.A. (2020) Cryptic metasomatic agent measured in situ in Variscan mantle rocks: Melt inclusions in garnet of eclogite, Granulitgebirge, Germany. Metamorphic Geol., 38, 207-234.
  21. Chopin C. (1984) Coesite and pure pyrope in high-grade blueschists of Western Alps: a first record and some consequences. Contrib. Mineral. Petrol., 86, 107-118.
  22. Chopin C., Sobolev N.V. (1995) Principal mineralogic indicators of UHP in crustal rocks. ultrahigh Pressure Metamorphism. (Ed. by R.G. Coleman, X. Wang). Cambridge: Cambridge University Press, 96-131.
  23. Dobretsov N.L., Sobolev N.V., Shatsky V.S., Coleman R.G., Ernst W.G. (1995) Geotectonic evolution of diamondi-ferous paragneisses of the Kokchetav complex, Northern Kazakhstan - the geologic enigma of ultrahigh-pressure crustal rocks within Phanerozoic foldbelt. Island Arc, 4, 267-279.
  24. Dobrzhinetskaya L.F., Braun T.V., Sheshkel G.G., Podkuiko Y.A. (1994) Geology and structure of diamond-bearing rocks of the Kokchetav massif, Kazakhstan. Tectonophysics, 233, 293-313.
  25. Ferrero S., Angel R.J. (2018) Micropetrology: Are Inclusions Grains of Truth? J. Petrol., 59, 1671-1700.
  26. Ferrero S., Bartoli O., Cesare B., Salvioli-Mariani E., Acosta-Vigil A., Cavallo A., Groppo C., Battiston S. (2012) Microstructures of melt inclusions in anatectic metasedimentary rocks. J. Metamorphic Geol., 30, 303-322.
  27. Ferrero S., Ziemann M.A., Angel R.J., O'Brien P.J., Wunder B. (2015) Kumdykolite, kokchetavite, and cristobalite crystallized in nanogranites from felsic granulites, Orlica-Snieznik Dome (Bohemian Massif): not evidence for ultrahigh-pressure conditions. Contrib. Mineral. Petrol., 171, 3.
  28. Hermann J., Green D.H. (2001) Experimental constraints on high pressure melting in subducted crust. Earth Planet. Sci. Lett., 188, 149-186.
  29. Hwang S.L., Yui T.F., Chu H.T., Shen P., Liou J.G., Sobolev N.V. (2013) Oriented kokchetavite compound rods in clinopyroxene of Kokchetav ultrahigh-pressure rocks. J. Asian Earth Sci., 63, 56-69.
  30. Hwang S.-L., Shen P., Chu H.-T., Yui T.-F., Liou J.G., Sobolev N.V. (2009) Kumdykolite, an orthorhombic polymorph of albite, from the Kokchetav ultrahigh-pressure massif, Kazakhstan. Europ. J. Miner., 21, 1325-1334.
  31. Hwang S.-L., Shen P., Chu H.-T., Yui T.-F., Liou J.G., Sobolev N.V., Shatsky V.S. (2005) Crust-derived potassic fluid in metamorphic microdiamond. Earth Planet. Sci. Lett., 231, 295-306.
  32. Hwang S.-L., Shen P., Chu H.-T., Yui T.-F., Liou J.G., Sobolev N.V., Zhang R.-Y., Shatsky V.S., Zayachkovsky A.A. (2004) Kokchetavite: a new potassium-feldspar polymorph from the Kokchetav ultrahigh-pressure terrane. Contrib. Mineral. Petrol., 148, 380-389.
  33. Kanzaki M., Xue X., Amalberti J., Zhang Q. (2012) Raman and NMR spectroscopic characterization of high-pressure K-cymrite (KAlSi3O8
  34. Korsakov A.V., Hermann J. (2006) Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth Planet. Sci. Lett., 241, 104-118.
  35. Korsakov A.V., Rezvukhina O.V., Rezvukhin D.I., Greshnyakov E.D., Shur V.Y. (2020) Dumortierite and tourmaline from the Barchi-Kol diamond-bearing kyanite gneisses (Kokchetav massif): A Raman spectroscopic study and petrological implications. J. Raman Spectroscopy, 51, 1839-1848.
  36. Korsakov A.V., Shatsky V.S., Sobolev N.V., Zayachkovsky A.A. (2002) Garnet-biotite-clinozoisite gneisses: a new type of diamondiferous metamorphic rocks of the Kokchetav massif. Europ. J. Miner., 14, 915-929.
  37. Korsakov A.V., Theunissen K., Smirnova L.V. (2004) Inter-granular diamonds derived from partial melting of crustal rocks at ultrahigh-pressure metamorphic conditions. Terra Nova, 16, 146-151.
  38. Korsakov A.V., Zhimulev E.I., Mikhailenko D.S., Demin S.P., Kozmenko O.A. (2015) Graphite pseudomorphs after diamonds: An experimental study of graphite morphology and the role of H2O in the graphitisation process. Lithos, 236-237, 16-26. https://doi.org/10.1016/j.lithos.2015.08.012
  39. Lussier A., Ball N.A., Hawthorne F.C., Henry D.J., Shimizu R., Ogasawara Y., Ota T. (2016) Maruyamaite, K(MgAl2)(Al5Mg)Si6O18(BO33(OH)3O, a potassium-dominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan: Description and crystal structure. Amer. Miner., 101, 355-361.
  40. Marschall H.R., Korsakov A.V., Luvizotto G.L., Nasdala L., Ludwig T. (2009) On the occurrence and boron isotopic composition of tourmaline in (ultra)high-pressure metamorphic rocks. J. Geol. Soc., london, 166, 811-823.
  41. Massonne H.-J., Bernhardt H.-J., Dettmar D., Kessler E., Medenbach O., Westphal T. (1998) Simple identification and quantification of microdiamonds in rock thinsections. Europ. J. Miner., 10, 497-504.
  42. Mikhno A.O., Korsakov A.V. (2013) K2O prograde zoning pattern in clinopyroxene from the Kokchetav diamond-grade metamorphic rocks: Missing part of metamorphic history and location of second critical end point for calcsilicate system. Gondwana Res., 23, 920-930.
  43. Mikhno A.O., Schmidt U., Korsakov A.V. (2013) Origin of K-cymrite and kokchetavite in the polyphase mineral inclusions from Kokchetav UHP calc-silicate rocks: evidence from confocal Raman imaging. Europ. J. Miner., 25, 807-816.
  44. Musiyachenko K.A., Korsakov A.V., Shimizu R., Zelenovskiy P.S., Shur V.Y. (2020). New insights on Raman spectrum of K-bearing tourmaline. J. Raman Spectroscopy, 51, 1415-1424.
  45. Ogasawara Y., Fukasawa K., Maruyama S. (2002) Coesite exsolution from supersilicic titanite in UHP marble from the Kokchetav massif, northern Kazakhstan. Amer. Miner., 87, 454-461.
  46. Ota T., Kobayashi K., Kunihiro T., Nakamura E. (2008) Boron cycling by subducted lithosphere; insights from diamondiferous tourmaline from the Kokchetav ultrahigh-pressure metamorphic belt. Geochim. Cosmochim. Acta, 72, 3531-3541.
  47. Perchuk L.L., Safonov O.G., Yapaskurt V.O., Barton J.M.B. (2002) Crystal-melt equilibria involving potassium-bearing clinopyroxene as indicator of mantle-derived ultra-high-potassic liquids: an analytical review. Lithos, 60, 89-111.
  48. Perchuk L.L., Yapaskurt V.O. (1998) Mantle-derived ultra-potassic liquids. Geol. Geophys., 39(12), 1756-1765.
  49. Romanenko A.V., Rashchenko S.V., Sokol A.G., Korsakov A.V., Seryotkin Y.V., Glazyrin K.V., Musiyachenko K. (2021) Crystal structures of K-cymrite and kokchetavite from single-crystal X-ray diffraction. Amer. Miner., 106, 404-409.
  50. Safonov O.G., Perchuk L.L., Litvin Y.A., Bindi L. (2005) Phase relations in the CaMgSi2O6-KAlSi3O8 join at 6 and 3.5 GPa as a model for formation of some potassium-bearing deep-seated mineral assemblages. Contrib. Mineral. Petrol., 149, 316-337.
  51. Schulze D.J., Helmstaedt H. (1988) Coesite-Sanidine Eclogites from Kimberlite: Products of Mantle Fractionation or Subduction? J. Geol., 96, 435-443.
  52. Seki Y., Kennedy G.C. (1964) The breakdown of potassium feldspar, KAlSi3O8 at high temperatures and high pressures. amer. Miner., 49, 1688-1706.
  53. Shatsky V.S., Sobolev N.V., Vavilov M.A. (1995) Diamond-bearing metamorphic rocks of the Kokchetav massif (northern Kazakhstan). ultra-High Pressure Metamorphism. Cambridge: Cambridge University Press, 427-455.
  54. Shimizu R., Ogasawara Y. (2005) K-Tourmaline in diamond-bearing rock from Kokchetav. Mitteilungen der Osterreichischen Mineralogischen Gesellschaft, 150.
  55. Shimizu R., Ogasawara Y. (2013) Diversity of potassium-bearing tourmalines in diamondiferous Kokchetav UHP metamorphic rocks: A geochemical recorder from peak to retrograde metamorphic stages. J. Asian Earth Sci., 63, 39-55.
  56. Smith D.C. (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 310, 641-644.
  57. Smyth J.R., Hatton C.J. (1977) A coesite-sanidine grospydite from the Roberts Victor kimberlite. Earth Planet. Sci. lett., 34, 284-290.
  58. Sobolev N.V., Shatsky V.S. (1990) Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature, 343, 742-746.
  59. Theunissen K., Dobretsov N.L., Korsakov A., Travin A., Shatsky V.S., Smirnova L., Boven A. (2000) Two contrasting petrotectonic domains in the Kokchetav mega-melange (north Kazakhstan): difference in exhumation mechanisms of ultrahigh-pressure crustal rocks, or a result of subsequent deformation? Island Arc, 9, 284-303.
  60. Zedgenizov D.A., Kagi H., Shatsky V.S., Ragozin A.L. (2014) Local variations of carbon isotope composition in diamonds from Sao-Luis (Brazil): Evidence for heterogenous carbon reservoir in sublithospheric mantle. Chem. Geol., 363, 114-124.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Korsakov A.V., Musiyachenko K.A., Mikhailenko D.S., Demin S.P., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».