USING OF RM-ANOVA IN R AND SPSS SOFTWARE ON THE EXAMPLE OF PROSPECTIVE ANALYSIS OF GLUCOSE TOLERANCE TEST RESULTS IN PATIENTS WITH POLYCYSTIC OVARY SYNDROME


Cite item

Full Text

Abstract

The paper presents the use of repeated measures analysis of variance (RM-ANOVA) in biomedical studies. Special attention is given to conceptualization of research questions, data computerization and data presentation as well as to assumptions for this method. We also discuss recommendations for presenting results of RM-ANOVA in scientific reports. For better understanding of the method we present practical example using the data on repeatedly measured blood glucose levels in patients with PCOS and healthy women from different ethnic groups after oral glucose tolerance test. Practical implementation of RM-ANOVA in R and SPSS software is also given with syntax and graphs.

About the authors

A V Atalyan

Scientific Center for Family Health and Human Reproduction Problems

Email: info@eco-vector.com
Irkutsk, Russia

O V Kuzmin

Irkutsk State University

Email: info@eco-vector.com

Institute of Mathematics, Economics and Computer Science

Irkutsk, Russia

A M Grjibovski

Northern State Medical University; Al-Farabi Kazakh National University; West Kazakhstan Marat Ospanov Medical University; North-Eastern Federal University

Email: Andrej.Grjibovski@gmail.com

доктор медицины, заведующий ЦНИЛ ; профессор; почетный доктор; почетный профессор; визитинг-профессор

Arkhangelsk, Russia; Almaty, Kazakhstan; Aktobe, Kazakhstan; Yakutsk, Russia

L V Suturina

Scientific Center for Family Health and Human Reproduction Problems

Author for correspondence.
Email: info@eco-vector.com
Irkutsk, Russia

References

  1. Ланг Т., Сесик М. Как описывать статистику в медицине. Аннотированное руководство для авторов, редакторов и рецензентов: пер. с англ. под ред. В. П. Леонова. М.: Практическая медицина, 2011. 480 с
  2. Alves R. M., Madruga M. R., Tavares H. R., Lobato T. D. C., Oliveira T. F. D. Fixed effect models with repeated measures applied to genetics improvement of cupuasu tree. Revista Brasileira de Fruticultura. 2015, 37 (4), pp. 993-1000.
  3. Armstrong R. A. Recommendations for analysis of repeated-measures designs: Testing and correcting for sphericity and use of manova and mixed model analysis. Ophthalmic & physiological optics: the journal of the British College of Ophthalmic Opticians (Optometrists). 2017, 37 (5), pp. 585-593.
  4. Behboudi-Gandevani S., Amiri M., Bidhendi Yarandi R., Noroozzadeh M., Farahmand M., Rostami Dovom M., Ramezani Tehrani F. The risk of metabolic syndrome in polycystic ovary syndrome: A systematic review and metaanalysis. Clinical endocrinology. 2018, 88 (2), pp. 169-184.
  5. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: Report of a WHO/IDF consultation. Geneva, Switzerland, World Health Organization, 2006. 1 online resource.
  6. Grundy S. M., Cleeman J. I., Daniels S. R., Donato K. A., Eckel R. H., Franklin B. A., Gordon D. J., Krauss R. M., Savage P. J., Smith S. C., Spertus J. A., Costa F. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005, 1 12 (17), pp. 27352752.
  7. Haverkamp N., Beauducel A. Violation of the Sphericity Assumption and Its Effect on Type-I Error Rates in Repeated Measures ANOVA and Multi-Level Linear Models (MLM). Frontiers in psychology. 2017, 8, p. 1841.
  8. Kain M. P., Bolker B. M., McCoy M. W A practical guide and power analysis for GLMMs: Detecting among treatment variation in random effects. PeerJ. 2015, 3, p. e1226.
  9. Kolesnikova L. I., Kolesnikov S. I., Darenskaya M. A., Grebenkina L. A., Nikitina O. A., Lazareva L. M., Suturina L. V., Danusevich I. N., Druzhinina E. B., Semendyaev A. A. Activity of LPO Processes in Women with Polycystic Ovarian Syndrome and Infertility. Bulletin of experimental biology and medicine. 2017, 162 (3), pp. 320-322.
  10. Lee Y., Park S., Moon S., Lee J., Elston R. C., Lee W., Won S. On the analysis of a repeated measure design in genome-wide association analysis. International journal of environmental research and public health. 2014, 11 (12), pp. 12283-12303.
  11. Lininger M., Spybrook J., Cheatham C. C. Hierarchical linear model: Thinking outside the traditional repeated-measures analysis-of-variance box. Journal of athletic training. 2015, 50 (4), pp. 438-441.
  12. Lizneva D., Kirubakaran R., Mykhalchenko K., Suturina L., Chernukha G., Diamond M. P., Azziz R. Phenotypes and body mass in women with polycystic ovary syndrome identified in referral versus unselected populations: Systematic review and meta-analysis. Fertility and sterility. 2016, 106 (6), pp. 1510-1520.e2.
  13. Lizneva D., Suturina L., Walker W., Brakta S., Gavrilova-Jordan L., Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertility and sterility. 2016, 106 (1), pp. 6-15.
  14. Macut D., Bjekić-Macut J., Rahelić D., Doknić M. Insulin and the polycystic ovary syndrome. Diabetes research and clinical practice. 2017, 130, pp. 163-170.
  15. Manell E., Hedenqvist P., Svensson A., Jensen-Waern M. Establishment of a Refined Oral Glucose Tolerance Test in Pigs, and Assessment of Insulin, Glucagon and Glucagon-Like Peptide-1 Responses. PloS one. 2016, 11 (2), p. e0148896.
  16. Phillips P. Oral glucose tolerance testing. Australian Family Physician. 2012, 41 (6), pp. 391-393.
  17. Samson S. L., Garber A. J. Metabolic syndrome. Endocrinology and metabolism clinics of North America. 2014, 43 (1), pp. 1-23.
  18. Suturina L., Lizneva D., Danusevich I., Lazareva L., Belenkaya L., Nadeliaeva I., Kovalenko I., Bazarova T., Khomyakova A., Natyaganova L., Dolgikh M., Kurashova N., Gavrilova O., Darzhaev Z., Sholohov L., Atalyan A., Rashidova M., Damdinova L., Rostovtseva L., Alekseeva L., Sharifulin E., Legro L., Stanczyk F., Yuldiz B., Chen Y. H., Kintziger K., Diamond M. P., Azziz R. The design, methodology, and recruitment rate for the Eastern Siberia PCOS epidemiology&phenotype (ES-PEP) Study. Abstracts of the 41st Annual Meeting of the Androgen Excess & PCOS Society. 2016, p. 76.
  19. van Buuren S., Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software. 201 1, 45 (3).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Human Ecology


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».