ANALYSIS OF CONTINUOUS DATA USING R


Cite item

Full Text

Abstract

The article presents basic algorithms of R software using for continuous data analysis. The basic algorithms for comparing quantitative data of one, two and three or more independent and related samples using parametric and non-parametric criteria are presented.

About the authors

V L Egoshin

Semey State Medical University, Pavlodar Campus

S V Ivanov

I.P. Pavlov First St. Petersburg State Medical University

N V Savvina

North-Eastern Federal University

S B Kalmakhanov

Al-Farabi Kazakh National University

L M Zhamaliyeva

West Kazakhstan Marat Ospanov State Medical University

A M Grjibovski

North-Eastern Federal University; Al-Farabi Kazakh National University; West Kazakhstan Marat Ospanov State Medical University; Northern State Medical University

Email: Andrej.Grjibovski@gmail.com
доктор медицины, заведующий ЦНИЛ; профессор; визитинг-профессор

References

  1. Кабаков Р. И. R в действии. Анализ и визуализация данных в программе R / пер. с англ. П. А. Волковой. М.: ДМК Пресс, 2014. 588 с
  2. Мастицкий С. Э., Шитиков В. К. Статистический анализ и визуализация данных с помощью R. М.: ДМК Пресс, 2015. 496 с
  3. Мастицкий С. Э. R: Анализ и визуализация данных. 2017. URL: http://r-analytics.blogspot.com (дата обращения 18.09.2018)
  4. Усынина А. А., Одланд И. О., Пылаева Ж. А., Пастбина И. М., Гржибовский А. М. Регистр родов Архангельской области как важный информационный ресурс для науки и практического здравоохранения // Экология человека. 2017. № 2. С. 58-64
  5. Altman D. G., Bland J. M. Parametric V Non-Parametric Methods for Data Analysis. BMJ. 2009, 338, p. a3167.
  6. Anuar, Roee. 2017. Ties Should Not Be Present ’in One-Sample Kolmgorov-Smirnov Test in R. Available from: https://stats.stackexchange.com/questions/232011/ties-should-not-be-present-in-one-sample-kolmgorov-smirnov-test-in-r/232067 (accessed: 18.09.2018).
  7. Bland J. M., Altman D. G. Analysis of continuous data from small samples. BMJ. 2009, 338, p. a3166.
  8. Bland J. M., Altman D. G. Statistics Notes: Transforming Data. BMJ. 1996, 312, p. 770.
  9. Cafiso S., DiGraziano A., Pappalardo G. Using the Delphi method to evaluate opinions of public transport managers on bus safety. Safety Science. 2013, 57 (8), pp. 254-263.
  10. Cohen J. 1988. Statistical Power Analys is for the Behavioral Sciences. 2nd ed. Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1988.
  11. Crawley M. J. The R Book. 2nd ed. Wiley, 2013.
  12. Gung. 2015. Effect Size for a One-Sinple T-Test. Available from: https://stats.stackexchange.com/questions/116514/effect-size-for-a-one-sample-t-test (accessed: 18.09.2018).
  13. Hoekstra R., Morey R. D., Rouder J. N., Wagenmakers E. J. Robust misinterpretation of confidence intervals. Psychon Bull Rev. 2014, 21 (5), pp. 1157-1 164.
  14. Keselman H. J., Othman A. R., Wilcox R. R. Preliminary Testing for Normality: Is This a Good Practice? Journal of Modern Applied Statistical Methods. 2013, 12 (2), pp. 2-19.
  15. Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology. 2013, 4, p. 863.
  16. Logan M. Biostatistical Design and Analysis Using R: A Practical Guide. Wiley-Blackwell, 2010.
  17. Mans T. 2014. Is Normality Testing ’Essentially Useless’? Available from: https://stats.stackexchange.com/questions/2492/is-normality-testing-essentially-useless/2501#2501 (accessed: 18.09.2018).
  18. Moyé L. Statistical Methods for Cardiovascular Researchers. Circulation Research. 2016, 118 (3), pp. 439453.
  19. Olejnik S., Algina J. Generalized Eta and Omega Squared Statistics: Measures of Effect Size for Some Common Research Designs. Psychological Methods. 2003, 8 (4), pp. 434-447.
  20. Pearson Ronald K. 2011. The Many Uses of Q-Q Plots. Available from: https://exploringdatablog.blogspot.com/2011/03/many-uses-of-q-q-plots.html (accessed: 18.09.2018).
  21. Peter Statistics. 2017. Crash Course. Available from: https://peterstatistics.com/CrashCourse/index.html (accessed: 18.09.2018).
  22. Rochon J., Gondan M., Kieser M. To test or not to test: Preliminary assessment of normality when comparing two independent samples. BMC Medical Research Methodology. 2012, 12 (1), p. 81.
  23. Rosenthal R. Meta-analytic procedures for social research. Newbury Park, CA, SAGE Publications, Incorporated, 1991.
  24. Schoder V., Himmelmann A., Wilhelm K. P. Preliminary testing for normality: some statistical aspects of a common concept. Clin Exp Dermatol. 2006, 31 (6), pp. 757-761.
  25. STAT500. Penn State. 2018. Applied Statistics. Available from: https://newonlinecourses.science.psu.edu/stat500/ (accessed: 18.09.2018).
  26. STAT502. Penn State. 2018. Analysis of Variance and Design of Experiments. Available from: https:// https://onlinecourses.science.psu.edu/stat502/ (accessed: 18.09.2018).
  27. Tomczak M., Tomczak E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends in Sport Sciences. 2014, 1 (21), pp. 19-25.
  28. Wickham H. 2014. Tidy Data. Journal of Statistical Software. 2014, 59 (10).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Human Ecology


 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).