重金属污染野生蘑菇和浆果对公众健康造成一般毒性影响的风险评估
- 作者: Stepovaia D.A.1, Unguryanu T.N.1
-
隶属关系:
- Northern State Medical University
- 期: 卷 31, 编号 1 (2024)
- 页面: 77-88
- 栏目: ORIGINAL STUDY ARTICLES
- URL: https://journal-vniispk.ru/1728-0869/article/view/264854
- DOI: https://doi.org/10.17816/humeco624154
- ID: 264854
如何引用文章
详细
论证。减少食品化学污染造成的不可接受的风险威胁是确保居民食品安全的主要目标之一。野生蘑菇和浆果会从环境中积累重金属,食用后会影响人体健康。
目的。评估食用野生蘑菇和浆果对阿尔汉格尔斯克州成年人健康造成一般毒性影响的风险。
材料与方法。通过问卷调查(n=445)研究了阿尔汉格尔斯克州成年人食用蘑菇和浆果的数量和频率。污染蘑菇和浆果的重金属摄入量是按照四种情况进行计算。使用危险商数 (HQ) 对暴露于汞、砷、铅和镉的情况下产生一般毒性效应的风险进行了定性。为评估对关键器官和系统的非致癌影响风险,采用了单向物质危害指数(HI)。定量数据以中位数(Me)、中位数的 95% 置信区间(95% CI)、第 90 百分位数(P90)表示。
结果。大多数受访者自己在阿尔汉格尔斯克州境内采集蘑菇(82%)和浆果(70%)。他们平均每周食用 180 克新鲜或冷冻浆果、133 克浆果果酱(果汁、果酱)、50 克蘑菇汤或煮蘑菇/炒蘑菇。所有重金属的 HQ 值均不超过 1.0。根据蘑菇和浆果的平均食用量以及野生植物重金属污染的平均水平计算出的 HI 值不超过 1.0。如果食用大量蘑菇(P90 - 417 克/周)和浆果(P90 - 900 克/周),且其重金属污染水平较高,则会增加内分泌系统(HI=2.27)、循环系统(HI=2.0)和消化系统(HI=2.0)、神经和免疫系统(HI 为 1.81)以及肾脏(HI=1.25)产生一般毒性影响的风险。研究发现,在平均污染水平下,可以不受限制地食用森林蘑菇和浆果。如果蘑菇和浆果的重金属污染程度较高(P90),则不建议每天食用超过 400 克的森林蘑菇和 650 克的森林浆果。
结论。大量食用野生蘑菇和浆果以及重金属暴露上限会增加对内分泌、神经、免疫系统、循环和消化器官产生一般毒性影响的风险。
作者简介
Daria Stepovaia
Northern State Medical University
Email: stepovaia.d.a@gmail.com
ORCID iD: 0000-0003-1512-9838
SPIN 代码: 8759-1012
俄罗斯联邦, 51 Troitsky avenue, 163000, Arkhangelsk
Tatiana Unguryanu
Northern State Medical University
编辑信件的主要联系方式.
Email: unguryanu_tn@mail.ru
ORCID iD: 0000-0001-8936-7324
SPIN 代码: 7358-1674
MD, Dr. Sci. (Medicine), Associate Professor
俄罗斯联邦, 51 Troitsky avenue, 163000, Arkhangelsk参考
- Popova AYu. Risk analysis as a strategic sphere in providing food products safety. Health Risk Analysis. 2018;(4):4–12. EDN: YUGRWH doi: 10.21668/health.risk/2018.4.01
- AMAP, 2015. AMAP Assessment 2015: Human Health in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo; 2015.
- Bezel VS, Mukhacheva SV, Trubina MR, Vorobeichik EL. Environmental chemical pollution: accumulation of heavy metals in berries and edible mushrooms, risk assessment by their consumption for population of Middle Urals. Problemy biogeokhimii i geokhimicheskoi ekologii. 2012;(3):39–47. (In Russ.) EDN: THABUH
- Katsnelson BA, Mazhayeva TV, Privalova LI, et al. The significance of the lead and cadmium accumulation in wild-growing edible mushrooms as a population health risk factor. Journal of Ural Medical Academic Science. 2011;(1):12–16. (In Russ.) EDN: OPFCPD
- Zhang J, Barałkiewicz D, Hanć A, et al. Contents and health risk assessment of elements in three edible ectomycorrhizal fungi (boletaceae) from polymetallic soils in Yunnan province, SW China. Biol Trace Elem Res. 2020;195(1):250–259. doi: 10.1007/s12011-019-01843-y
- Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Exp Suppl. 2012;101:133–164. doi: 10.1007/978-3-7643-8340-4_6
- Bakhireva LN, Rowland AS, Young BN, et al. Sources of potential lead exposure among pregnant women in New Mexico. Matern Child Health J. 2013;17(1):172–179. doi: 10.1007/s10995-012-0963-5
- Ermagambetova AP, Kabdrakhmanova GB, Kozbagarov KE, et al. Influence of xenobiotics on nervous system (review). Herald of Almaty State Institute of Advanced Medical Education. 2011;3:22–24. EDN: VYTSOD
- Kumar S, Sharma A. Cadmium toxicity: effects on human reproduction and fertility. Rev Environ Health. 2019;34(4):327–338. doi: 10.1515/reveh-2019-0016
- Heidari S, Mostafaei S, Razazian N, et al. The effect of lead exposure on IQ test scores in children under 12 years: a systematic review and meta-analysis of case-control studies. Syst Rev. 2022;11(1):106. doi: 10.1186/s13643-022-01963-y
- Kuznetsova EG, Shilyaev RR, Gromova OA, Fadeeva OYu. Toxic microelements and their role in the development of nephropathies in children. Nephrology. 2007;11(2):31–38. EDN: JUEQOV doi: 10.24884/1561-6274-2007-11-2-31-38
- Guidelines for assessing the risk to public health from exposure to chemicals that pollute the environment (R 2.1.10.3968-23). Moscow: Federal'nyi tsentr gossanepidnadzora Minzdrava Rossii; 2023. (In Russ.)
- Determination of exposure and assessment of the risk of exposure to chemical contaminants of food products on the population. Methodological guidelines. Moscow: Federal'nyi tsentr gigieny i epidemiologii Rospotrebnadzora; 2010. (In Russ.)
- Unguryanu TN, Stepovaia DA, Belyaevskaya IA, et al. Assessment of the chemical and radiological safety of wild mushrooms and berries growing in the Arkhangelsk region. Ekologiya cheloveka (Human Ecology). 2023;30(1):17–27. EDN: GHBMFA doi: 10.17816/humeco11097
- Kalinina EA, Boykova TE, Belozerova TI, et al. Control of the content of heavy metals (Ni, Cu, Cr, Pb, Fe) in mushrooms of the Arkhangelsk region. In: Engineering technologies: chemistry, biology, medicine and information technologies in industry: collection of scientific articles of the international scientific conference. Volgograd; 2020. P. 50–53. (In Russ.) EDN: YFSBID
- Zimovec AA. Some features of heavy metals distribution in soils of the North European territory of Russia (on example Arkhangelsk area's soils). Anthropogenic Transformation of Nature. 2010;1:303–309. EDN: WKXDQZ
- Dudarev AA, Yamin-Pasternak S, Pasternak I, Chupakhin VS. Traditional diet and environmental contaminants in Coastal Chukotka IV: recommended intake criteria. Int J Environ Res Public Health. 2019;16(5):696. doi: 10.3390/ijerph16050696
- Evaluation of certain contaminants in food: seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives // WHO technical report series. N 959.
- Evaluation of certain contaminants in food: seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives // WHO technical report series. N 960.
- Pöykiö R, Mäenpää A, Perämäki P, et al. Heavy metals (Cr, Zn, Ni, V, Pb, Cd) in lingonberries (Vaccinium vitis-idaea L.) and assessment of human exposure in two industrial areas in the Kemi-Tornio region, Northern Finland. Arch Environ Contam Toxicol. 2005;48(3):338–343. doi: 10.1007/s00244-004-0074-4
- Dudarev AA, Dushkina EV, Sladkova YuN, et al. Evaluating health risk caused by exposure to metals in local foods and drinkable water in Pechenga district of Murmansk region. Russian Journal of Occupational Health and Industrial Ecology. 2015;11:25–32. EDN: UXVBYZ
- Liu S, Fu Y, Shi M, et al. Pollution level and risk assessment of lead, cadmium, mercury, and arsenic in edible mushrooms from Jilin Province, China. Journal of Food Science. 2021;86(8):3374–3383. doi: 10.1111/1750-3841.15849
- Rashid MH, Rahman MM, Correll R, Naidu R. Arsenic and other elemental concentrations in mushrooms from Bangladesh: health risks. Int J Environ Res Public Health. 2018;15(5):919. doi: 10.3390/ijerph15050919
- Orywal K, Socha K, Nowakowski P, et al. Health risk assessment of exposure to toxic elements resulting from consumption of dried wild-grown mushrooms available for sale. PLoS One. 2021;16(6):e0252834. doi: 10.1371/journal.pone.0252834
- Širić I, Kumar P, Eid EM, et al. Occurrence and health risk assessment of cadmium accumulation in three tricholoma mushroom species collected from wild habitats of Central and Coastal Croatia. J Fungi (Basel). 2022;8(7):685. doi: 10.3390/jof8070685
- Fu Z, Liu G, Wang L. Assessment of potential human health risk of trace element in wild edible mushroom species collected from Yunnan Province, China. Environ Sci Pollut Res Int. 2020;27(23):29218–29227. doi: 10.1007/s11356-020-09242-w
- Zsigmond AR, Varga K, Harangi S, et al. Elemental profile of edible mushrooms from a forest near a major Romanian city. Acta Universitatis Sapientiae, Agriculture and Environment. 2015;7:98–107. doi: 10.1515/ausae-2015-0009
- Dudarev AA, Chupakhin VS, Vlasov SV, Yamin-Pasternak S. Traditional diet and environmental contaminants in coastal Chukotka III: metals. Int J Environ Res Public Health. 2019;16(5):699. doi: 10.3390/ijerph16050699
补充文件
