Сульфидная минеральная вода как донор сигнальных молекул газотрансмиттера сероводорода

Обложка

Цитировать

Полный текст

Аннотация

Обоснование. Сероводород признан третьим газотрансмиттером, играющим существенную роль как в физиологических процессах, так и при различных заболеваниях. Экспериментально подтверждено, что он синтезируется в тканях, оказывая разнообразное физиологическое воздействие на сердечно-сосудистую, нервную и другие системы организма. Изучение роли H2S в метаболизме живых систем установило наличие доноров, которые способны его выделять, включая сульфидную минеральную воду, используемую в бальнеологии.

Цель. Обосновать роль сульфидной минеральной воды как донора сигнальных молекул газотрансмиттера сероводорода, инициирующих терапевтический эффект.

Материалы и методы. Проведён анализ публикаций последних 20 лет, отобранных в электронных базах данных РИНЦ, PubMed, Google Scholar и Medline. Поиск осуществляли по ключевым словам «газотрансмиттеры», «сероводород», «доноры сероводорода», «сульфидная бальнеотерапия». В результате было отобрано 63 публикации, наиболее релевантных теме исследования.

Результаты. Сероводород принадлежит к группе газотрансмиттеров — газообразных сигнальных молекул, вырабатываемых организмом человека и животных. Эти молекулы играют важную роль в регуляции клеточной активности и выступают в качестве медиаторов различных процессов. H2S оказывает многогранное физиологическое воздействие на различные системы организма, включая головной мозг, где он может влиять на эмоциональное состояние и поведение. Источниками сероводорода могут служить газообразный H2S, водные растворы гидросульфида и сульфида натрия, сульфидная минеральная вода и карбонилсульфид. Терапевтический эффект наружного применения сероводородных вод обусловлен наличием в них сульфида водорода в свободном, полусвязанном и связанном состояниях. Минеральная вода также содержит серу, сульфаны (полисероводороды), циклические полиядерные сероорганические соединения, а также диалкилполисульфиды. H2S проникает в кровь через кожу, слизистые оболочки и дыхательные пути. Сульфидные бальнеопроцедуры, активируя полиморфно-ядерные мононуклеары, способствуют репаративной регенерации и упорядочивают структуру коллегановых волокон в рубцовой ткани. Нарушение баланса сероводорода, как его избыток, так и дефицит, может быть связано с развитием ряда нейродегенеративных заболеваний.

Заключение. Сульфидная минеральная вода может служить донором сигнальных молекул газотрансмиттера сероводорода, что подтверждают положительные результаты эффективности бальнеотерапии.

Об авторах

Леонид Сергеевич Ходасевич

Сочинский государственный университет

Автор, ответственный за переписку.
Email: nic_kir@mail.ru
ORCID iD: 0000-0003-4676-0972
SPIN-код: 3732-6794

д-р мед. наук, профессор

Россия, Сочи

Антонина Валентиновна Полякова

Сочинский государственный университет

Email: av-polyakova@list.ru
ORCID iD: 0000-0003-1796-4546
SPIN-код: 3748-9802

канд. биол. наук, доцент

Россия, Сочи

Список литературы

  1. Panthi S, Manandhar S, Gautam K. Hydrogen sulfide, nitric oxide, and neurodegenerative disorders. Transl Neurodegener. 2018;7:3. doi: 10.1186/s40035-018-0108-x
  2. Tarasov VN, Chelnokova NV, Tarasova VA. Possible risk factors for workers during drilling, production and processing of natural gas with high hydrogen sulfide content. Advances in current natural sciences. 2007;(10):130–133. (In Russ.) EDN: IJKUQL
  3. Shefa U, Kim MS, Jeong NY, Jung J. Antioxidant and cell-signaling functions of hydrogen sulfide in the central nervous system. Oxid Med Cell Longev. 2018;2018:1873962. doi: 10.1155/2018/1873962
  4. Szabo C. A timeline of hydrogen sulfide (H2S) research: from environmental toxin to biological mediator. Biochem Pharmacol. 2018;149:5–19. doi: 10.1016/j.bcp.2017.09.010
  5. Muravyov AV. The role of gas mediators (CO, NO and H2S) in the regulation of blood circulation: analysis of the participation of blood cell microrheology. Regional Blood Circulation and Microcirculation. 2021;20(1):91–99. doi: 10.24884/1682-6655-2021-20-1-91-99 EDN: LMZFPV
  6. Urazaev AKh, Zefirov AL Physiological role of a nitric oxide. Progress in Physiological Science. 1999;30(1):63–72. EDN: MQDTQX
  7. Ignarro LJ, Byrns RE, Buga GM, Wood KS. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res. 1987;61(6):866–879. doi: 10.1161/01.res.61.6.866
  8. Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012;92(2):791–896. doi: 10.1152/physrev.00017. 2011
  9. Gadalla MM, Snyder SH. Hydrogen sulfide as a gasotransmitter. J Neurochem. 2010;113(1):14–26. doi: 10.1111/j.1471-4159.2010.06580.x
  10. Wang R. Signal transduction and the gasotransmitters. NO, CO and H2S in Biology and Medicine. Humana Totowa, NJ; 2004. 378 р. doi: 10.1007/978-1-59259-806-9
  11. Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J. 2002;16(13):1792–1798. doi: 10.1096/fj.02-0211hyp
  12. Gusakova SV, Smagliy LV, Birulina YuG, et al. Molecular mechanisms of action of gas transmitters NO, CO and H2S in smooth muscle cells and effect of NO-generating compounds (nitrates and nitrites) on average life expectancy. Progress in Physiological Science. 2017;48(1):24–52. EDN: YKVEDH
  13. Sitdikova GF, Yakovlev AV, Zefirov AL. Gasotransmitters: from the toxic effects to the regulation of cellular function and clinical application. Bulletin of Siberian Medicine. 2014;13(6):185–200. doi: 10.20538/1682-0363-2014-6-185-200 EDN: THUWPB
  14. Huang YQ, Jin HF, Zhang H, et al. Interaction among hydrogen sulfide and other gasotransmitters in mammalian physiology and pathophysiology. In: Zhu YC, editor. Advances in Hydrogen Sulfide Biology. Advances in Experimental Medicine and Biology. Springer, Singapore; 2021;1315. doi: 10.1007/978-981-16-0991-6_9
  15. Zhang D, Wang X, Tian X, et al. The increased endogenous sulfur dioxide acts as a compensatory mechanism for the downregulated endogenous hydrogen sulfide pathway in the endothelial cell inflammation. Front Immunol. 2018;9:882. doi: 10.3389/fimmu.2018.00882
  16. Łowicka E, Bełtowski J. Hydrogen sulfide (H2S) — the third gas of interest for pharmacologists. Pharmacol Rep. 2007;59(1):4–24.
  17. Powell CR, Dillon KM, Matson JB. A review of hydrogen sulfide (H2S) donors: chemistry and potential therapeutic applications. Biochem Pharmacol. 2018;149:110–123. doi: 10.1016/j.bcp.2017.11.014
  18. Olefirenko VT. Water-heat therapy. Moscow: Medicine; 1970. 208 р. (In Russ.)
  19. Manshina NV. Balneology for all. For health to the resort. Moscow: Veche; 2007. 589 р. (In Russ.) ISBN: 978-5-9533-2354-3
  20. Khodasevich LS. The toxic complications of hydrogen sulfide-based balneotherapy in the spa and health resort practice. Problems of Balneology, Physiotherapy and Exercise Therapy. 2015;92(5):61–66. doi: 10.17116/kurort2015561-66 EDN: VIYXWL
  21. Pastushenko YuN. Mineral waters of the federal resort of Sochi. Sochi; 2006. 218 р. (In Russ.) ISBN: 5-7588-0423-1
  22. Khodasevich LS, Utekhina VP, Ryzhkov NT. The 100th anniversary of vasily mikhailovich kukanov’s birth (1904–1978). Problems of Balneology, Physiotherapy, and Exercise Therapy. 2004;(6):49–50. EDN: OJKMXV
  23. Luzgina NG, Shkurupy VA, Potapova OV, Devizorova OV. Pathogenetic features of balneological response in patients with atopic dermatitis on intake of natural high mineralized water during medical rehabilitation. Russian Journal of Allergy. 2009;(6):18–25. EDN: KYOMLX
  24. Kamyshny AJr, Ekeltchik I, Gun J, Lev O. Method for the determination of inorganic polysulfide distribution in aquatic systems. Anal Chem. 2006;78(8):2631–2639. doi: 10.1021/ac051854a
  25. Khutoryanskii VA, Smirnov AI, Matveev DA. The determination of molecular sulphur in Matsesta mineral water and its analog Novonukutskaya mineral water. Problems of Balneology, Physiotherapy, and Exercise Therapy. 2014;91(6):48–51. EDN: TKIMLJ
  26. Prandelli C, Parola C, Buizza L, et al. Sulphurous thermal water increases the release of the anti-inflammatory cytokine IL-10 and modulates antioxidant enzyme activity. Int J Immunopathol Pharmacol. 2013;26(3):633–646. doi: 10.1177/039463201302600307
  27. Tsopikov AS, Kuznetsov VM. Use of Matsesta irrigations in the complex treatment of patients with post-burn keloid scars: Information and methodological letter. Sochi; 1986. 13 р. (In Russ.)
  28. Ibadova GD. Medical rehabilitation of patients with osteoarthrosis at the resort of Sochi. Sochi: RIO SGUTiKD; 2005. (In Russ.)
  29. Kurtaev OSh, Grechkina ZF, Khodasevich LS. Effects of hydrosulfide balneotherapy on microcirculation in arterial hypertension. Problems of Balneology, Physiotherapy, and Exercise Therapy. 2004;(4):4–7. EDN: OJJJFN
  30. Khodasevich LS, Mironov VI, Rassokha IA, et al. Hydrogen sulfide balneotherapy in comprehensive sanatorium-resort treatment of post-burn scars in children. Problems of Balneology, Physiotherapy, and Exercise Therapy. 2024;101(3):32–40. doi: 10.17116/kurort202410103132 EDN: RLKEDD
  31. Murphy B, Bhattacharya R, Mukherjee P. Hydrogen sulfide signaling in mitochondria and disease. FASEB J. 2019;33(12):13098–13125. doi: 10.1096/fj.201901304R
  32. Nicholls P, Marshall DC, Cooper CE, Wilson MT. Sulfide inhibition of and metabolism by cytochrome c oxidase. Biochem Soc Trans. 2013;41(5):1312–1316. doi: 10.1042/BST20130070
  33. Bobrovnitsky IP, Khodasevich LS, Ibadova GD, Kurtaev OSh. Mechanism of action of hydrogen sulphide balneotherapy in the light of knowledge about systemic inflammatory response. Problems of Balneology, Physiotherapy, and Exercise Therapy. 2005;(3):47–52. EDN: OJKNZN
  34. Hermann A, Sitdikova GF, Weiger T. Gase als zellulare Signalstoffe. Biol Unserer Zeit. 2010;40(3):185–193. doi: 10.1002/biuz.201010422
  35. Kimura H. Hydrogen sulfide (H2S) and Polysulfide (H2Sn) signaling: the first 25 years. Biomolecules. 2021;11(6):896. doi: 10.3390/biom11060896
  36. Tikhomirova IA, Petrochenko EP, Petrochenko AS. Hydrogen sulfide as a signaling molecule in the cardiovascular system. Regional Blood Circulation and Microcirculation. 2021;20(1):5–16. doi: 10.24884/1682-6655-2021-20-1-5-16 EDN: BRKKMZ
  37. Rong W, Kimura H, Grundy D. The neurophysiology of hydrogen sulfide. Inflamm Allergy Drug Targets. 2011;10(2):109–117. doi: 10.2174/187152811794776295
  38. Kimura H. Hydrogen SUlfide (H2S)/polysulfides (H2Sn) signalling and TRPA1 channels modification on sulfur metabolism. Biomolecules. 2024;14(1):129. doi: 10.3390/biom14010129
  39. Levinn CM, Cerda MM, Pluth MD. Development and application of carbonyl sulfide-based donors for H2S delivery. Acc Chem Res. 2019;52(9):2723–2731. doi: 10.1021/acs.accounts.9b00315
  40. Paul BD, Snyder SH. Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem Pharmacol. 2018;149:101–109. doi: 1016/j.bcp.2017.11.019
  41. Gong QH, Wang Q, Pan LL, et al. Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: a pro-inflammatory pathway in rats. Pharmacol Biochem Behav. 2010;96(1):52–58. doi: 10.1016/j.pbb.2010.04.006
  42. Tang XQ, Yang CT, Chen J, et al. Effect of hydrogen sulphide on beta-amyloid-induced damage in PC12 cells. Clin Exp Pharmacol Physiol. 2008;35(2):180–186. doi: 10.1111/j.1440-1681.2007.04799.x
  43. Fan H, Guo Y, Liang X, et al. Hydrogen sulfide protects against amyloid beta-peptide induced neuronal injury via attenuating inflammatory responses in a rat model. J Biomed Res. 2013;27(4):296–304. doi: 10.7555/JBR.27.20120100
  44. Xuan A, Long D, Li J, et al. Hydrogen sulfide attenuates spatial memory impairment and hippocampal neuroinflammation in β-amyloid rat model of Alzheimer’s disease. J Neuroinflammation. 2012;9:202. doi: 10.1186/1742-2094-9-202
  45. Eto K, Asada T, Arima K, et al. Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem Biophys Res Commun. 2002;293(5):1485–1488. doi: 10.1016/S0006-291X(02)00422-9
  46. Zhang LM, Jiang CX, Liu DW. Hydrogen sulfide attenuates neuronal injury induced by vascular dementia via inhibiting apoptosis in rats. Neurochem Res. 2009;34(11):1984–1992. doi: 10.1007/s11064-009-0006-9
  47. Giuliani D, Ottani A, Zaffe D, et al. Hydrogen sulfide slows down progression of experimental Alzheimer’s disease by targeting multiple pathophysiological mechanisms. Neurobiol Learn Mem. 2013;104:82–91. doi: 10.1016/j.nlm.2013.05.006
  48. Schreier SM, Muellner MK, Steinkellner H, et al. Hydrogen sulfide scavenges the cytotoxic lipid oxidation product 4-HN. Neuroto Res. 2010;17(3):249–256. doi: 10.1007/s12640-009-9099-9
  49. Zhang JY, Ding YP, Wang Z, et al. Hydrogen sulfide therapy in brain diseases: from bench to bedside. Med Gas Res. 2017;7(2):113–119. doi: 10.4103/2045-9912.208517
  50. Kida K, Ichinose F. Hydrogen sulfide and neuroinflammation. Handb Exp Pharmacol. 2015;230:181–189. doi: 10.1007/978-3-319-18144-8_9
  51. Kida K, Yamada M, Tokuda K, et al. Inhaled hydrogen sulfide prevents neurodegeneration and movement disorder in a mouse model of Parkinson’s disease. Antioxid Redox Signal. 2011;15(2):343–352. doi: 10.1089/ars.2010.3671
  52. Hu LF, Lu M, Tiong CX, et al. Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell. 2010;9(2):135–146. doi: 10.1111/j.1474-9726.2009.00543.x
  53. Xie L, Hu LF, Teo XQ, et al. Therapeutic effect of hydrogen sulfide-releasing L-Dopa derivative ACS84 on 6-OHDA-induced Parkinson’s disease rat model. PLoS One. 2013;8(4):e60200. doi: 10.1371/journal.pone.0060200
  54. Cao X, Cao L, Ding L, Bian JS. A new hope for a devastating disease: hydrogen sulfide in parkinson’s disease. Mol Neurobiol. 2018;55(5):3789–3799. doi: 10.1007/s12035-017-0617-0
  55. Karimi SA, Hosseinmardi N, Janahmadi M, et al. The protective effect of hydrogen sulfide (H2S) on traumatic brain injury (TBI) induced memory deficits in rats. Brain Res Bull. 2017;134:177–182. doi: 10.1016/j.brainresbull. 2017.07. 014
  56. Borgens RB, Liu-Snyder P. Understanding secondary injury. Q Rev Biol. 2012;87(2):89–127. doi: 10.1086/665457
  57. Zhang M, Shan H, Wang T, et al. Dynamic change of hydrogen sulfide after traumatic brain injury and its effect in mice. Neurochem Res. 2013;38(4):714–725. doi: 10.1007/s11064-013-0969-4
  58. Dai HB, Xu MM, Lv J, et al. Mild hypothermia combined with hydrogen sulfide treatment during resuscitation reduces hippocampal neuron apoptosis via NR2A, NR2B, and PI3K-Akt signaling in a rat model of cerebral ischemia-reperfusion injury. Mol Neurobiol. 2016;53(7):4865–4873. doi: 10.1007/s12035-015-9391-z
  59. Li T, Liu H, Xue H, et al. Neuroprotective effects of hydrogen sulfide against early brain injury and secondary cognitive deficits following subarachnoid hemorrhage. Brain Pathol. 2017;27(1):51–63. doi: 10.1111/bpa.12361
  60. Yonezawa D, Sekiguchi F, Miyamoto M, et al. A protective role of hydrogen sulfide against oxidative stress in rat gastric mucosal epithelium. Toxicology. 2007;241(1-2):11–18. doi: 10.1016/j.tox.2007.07.020
  61. Chu QJ, He L, Zhang W, et al. Hydrogen sulfide attenuates surgical trauma-induced inflammatory response and cognitive deficits in mice. J Surg Res. 2013;183(1):330–336. doi: 10.1016/j.jss.2012.12.003
  62. Paul BD, Sbodio JI, Xu R, et al. Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington’s disease. Nature. 2014;509(7498):96–100. doi: 10.1038/nature13136
  63. Kimura H, Shibuya N, Kimura Y. Hydrogen sulfide is a signaling molecule and a cytoprotectant. Antioxid Redox Signal. 2012;17(1):45–57. doi: 10.1089/ars.2011.4345

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».