居住在俄罗斯欧洲部分不同地区的青年标准功能性近红外光谱指标评估结果
- 作者: Mulik A.B.1, Ulesikova I.V.1, Nazarov N.O.2, Kunavin M.A.3, Soloviev A.G.4, Shatyr Y.A.1
-
隶属关系:
- Kirov Military Medical Academy
- Change Implementation Center of the Ministry of Health of the Moscow Region
- Northern (Arctic) Federal University named after M.V. Lomonosov
- Northern State Medical University
- 期: 卷 31, 编号 11 (2024)
- 页面: 807-818
- 栏目: ORIGINAL STUDY ARTICLES
- URL: https://journal-vniispk.ru/1728-0869/article/view/314556
- DOI: https://doi.org/10.17816/humeco643398
- EDN: https://elibrary.ru/EQNEBN
- ID: 314556
如何引用文章
全文:
详细
论证。近年来,越来越多研究尝试比较不同研究者使用不同仪器设备所获得的功能性近红外光谱(functional near-infrared spectroscopy,fNIRS)结果。为实现fNIRS指标的标准化、结果解释和实验数据的可重复性,有必要在生活于不同自然气候区域的健康人群中开展比较性评估。
目的。描述生活在不同环境条件下青年的标准 fNIRS 指标表现。
材料与方法。研究共纳入100名18–25岁、临床健康的欧洲人种男性与女性,分别为俄罗斯欧洲部分Archangelsk 州、Volgograd州和Republic of Crimea的原住居民。使用Cortivision Photon Cap C20仪器(Cortivision,波兰)记录大脑皮层在近红外光谱范围内的血流动力学反应。研究设计包括三阶段:第一阶段为睁眼基础状态(30秒);第二阶段依次进行“简单视动反应”(2分钟),“复杂视动反应”(2分钟)和“Kraepelin测试”(3分钟);第三阶段为睁眼负荷后状态(1分钟)。在后续数据分析中,纳入了基础阶段和负荷后阶段fNIRS中HbO与HbR浓度(mmol/L)指标的平均值。
结果。对模型地区人群 fNIRS 指标基础阶段与负荷后阶段的区域表达强度进行比较分析,结果显示在居住环境舒适度显著差异的地区(Volgograd州 — 6分,Volgograd州 — 17分,Republic of Crimea — 25分)之间无统计学显著差异。同时,参与研究的男性与女性样本在fNIRS指标的基础阶段表达水平上表现出明显差异。在HbO和HbR的基础期数值中,男性与女性在大脑皮层相同区域表现出方向一致的重复性差异。在这两种情况下,均在左右对称的额叶导联(AF4-AFp2、AF3-AFp1)和颞叶导联(FTT8-T8、FTT7-T7)中检测到浓度的统计学显著差异。女性在大脑皮层额叶区域的相关指标更高,而男性则在颞叶区域表现出更高的血红蛋白浓度。
结论。本研究描述了生活在不同环境条件下青年群体的标准fNIRS指标特征。该数据有助于提升采用fNIRS技术的研究结果的可靠性和可重复性,从而推动先进脑功能神经成像方法在科研与临床实践中的应用。
关键词
作者简介
Aleksandr B. Mulik
Kirov Military Medical Academy
编辑信件的主要联系方式.
Email: mulikab@mail.ru
ORCID iD: 0000-0001-6472-839X
SPIN 代码: 8079-9698
Scopus 作者 ID: 57194478275
Researcher ID: U-2142-2017
Dr. Sci. (Biology), Professor
俄罗斯联邦, Saint PetersburgIrina V. Ulesikova
Kirov Military Medical Academy
Email: ulesikovairina@mail.ru
ORCID iD: 0000-0001-9284-3280
SPIN 代码: 9859-6036
Scopus 作者 ID: 57194476699
Researcher ID: D-3502-2016
Cand. Sci. (Biology)
俄罗斯联邦, Saint PetersburgNikita O. Nazarov
Change Implementation Center of the Ministry of Health of the Moscow Region
Email: naznik86@gmail.com
ORCID iD: 0000-0002-0668-4664
SPIN 代码: 9126-2809
Scopus 作者 ID: 57195288897
Researcher ID: GON-7330-2022
MD, Cand. Sci. (Medicine)
俄罗斯联邦, KrasnogorskMikhail A. Kunavin
Northern (Arctic) Federal University named after M.V. Lomonosov
Email: m.kunavin@narfu.ru
ORCID iD: 0000-0001-7948-1043
SPIN 代码: 5271-0260
Scopus 作者 ID: 56089688500
Researcher ID: HKE-1458-2023
Cand. Sci. (Biology), Associate Professor
俄罗斯联邦, ArkhangelskAndrey G. Soloviev
Northern State Medical University
Email: asoloviev1@yandex.ru
ORCID iD: 0000-0002-0350-1359
SPIN 代码: 2952-0619
Scopus 作者 ID: 7103242976
Researcher ID: O-8644-2016
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, ArkhangelskYulia A. Shatyr
Kirov Military Medical Academy
Email: yuliashatyr@gmail.com
ORCID iD: 0000-0001-9279-5282
SPIN 代码: 2942-6250
Scopus 作者 ID: 57194476788
Researcher ID: U-2181-2017
Cand. Sci. (Biology), Associate Professor
俄罗斯联邦, Saint Petersburg参考
- Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage. 2012;63(2):921–935. doi: 10.1016/j.neuroimage.2012.03.049
- Yücel MA, Lühmann A, Scholkmann F, et al. Best practices for fNIRS publications. Neurophotonics. 2021;8(1):101–108. doi: 10.1117/1.NPh.8.1.012101
- Komleva YuK, Salmina AB, Prokopenko SV, et al. Changes in structural and functional plasticity of the brain induced by environmental enrichment. Annals of the Russian Academy of Medical Sciences. 2013;68(6):39–48. doi: 10.15690/vramn.v68i6.672 EDN: QCVRFD
- Miguel PM, Pereira LO, Silveira PP, Meaney MJ. Early environmental influences on the development of children's brain structure and function. Dev Med Child Neurol. 2019;61(10):1127–1133. doi: 10.1111/dmcn.14182
- Smith L. Integrating the physical environment within a population neuroscience perspective. Curr Top Behav Neurosci. 2024;68:223–238. doi: 10.1007/7854_2024_477
- Mulik AB, Ulesikova IV, Mulik IG, et al. Comfort and aesthetics of the living environment as a determinant of an individual's phenotypic and social status. Ekologiya cheloveka (Human Ecology). 2019;26(2):31–38. doi: 10.33396/1728-0869-2019-2-31-38 EDN: XLUHZE
- Characteristics of the sanitary system. In: National Atlas of Russia. Vol. 2. Nature. Ecology. Moscow; 2007. [cited 2025 Mar 20]. Available from: http://xn--80aaaa1bhnclcci1cl5c4ep.xn--p1ai/cd2/447/447 (In Russ.)
- Khan AF, Yuan H, Smith ZA, Ding L. Distinct time-resolved brain-wide coactivationsin oxygenated and deoxygenated hemoglobin. IEEE Trans Biomed Eng. 2024;71(8):463–472. doi: 10.1109/TBME.2024.3377109
- Shatyr YuA, Nazarov NO, Glushakov RI, et al. Search for genetic and phenotypical bases of human predisposition to risk behavior. Scientific Notes of V.I. Vernadsky Crimean Federal University. Biology. Chemistry. 2023;9(3):291–299. EDN: ZOEYFS
- Mulik AB, Shatyr YuA, Ulesikova IV, et al. Sexual characteristics of genetic determination of human propensity to aggressive, suicidal and addcitve behavior: descriptive study. Marine medicine. 2024;10(3):94–107. doi: 10.22328/2413-5747-2024-10-3-94-107 EDN: FJLHJI
- Akil M, Kolachana BS, Rothmond DA, et al. Catechol-O-methyltransferase genotype and dopamine regulation in the human brain. J Neurosci. 2003;23(6):2008–2013. doi: 10.1523/JNEUROSCI.23-06-02008.2003
- Pinggera A, Lieb A, Benedetti B, et al. CACNA1D de novo mutations in autism spectrum disorders activate Cav1.3 L-type calcium channels. Biol Psychiatry. 2015;77(9):816–822. doi: 10.1016/j.biopsych.2014.11.020
- Dolphin AC. The α2δ subunits of voltage-gated calcium channels. Biochim Biophys Acta. 2013;1828(7):1541–1549. doi: 10.1016/j.bbamem.2012.11.019
- Kan RLD. Sex differences in brain excitability revealed by concurrent iTBS/fNIRS. Asian J Psychiatr. 2024;(96):40–43. doi: 10.1016/j.ajp.2024.104043
- Auger H, Bherer L, Boucher É, et al. Quantification of extra-cerebral and cerebral hemoglobin concentrations during physical exercise using time-domain near infrared spectroscopy. Biomed Opt Express. 2016;7(10):3826–3842. doi: 10.1364/BOE.7.003826
- Filatova OV, Sidorenko AA. Age and sex hemodynamic characteristics of cerebral arteries. Acta Biologica Sibirica. 2015;1(3–4):199–243. EDN: VARUGZ
- Ben Mansour G, Kacem A, Ishak M, et al. The effect of body composition on strength and power in male and female students. BMC Sports Sci Med Rehabil. 2021;13(1):130–150. doi: 10.1186/s13102-021-00376-z
- Keller JL, Traylor MK, Gray SM, et al. Sex differences in NIRS-derived values of reactive hyperemia persist after experimentally controlling for the ischemic vasodilatory stimulus. J Appl Physiol (1985). 2023;135(1):3–14. doi: 10.1152/japplphysiol.00174.2023
- Kwashnjova KV, Iljukhina WA, Kryghanowskiy EV, Chistow AV. Near-infrared topography and spectroscopy in the study of brain activity. Biotechnosfera. 2013;2(26):1–5. EDN: REXRPN
- Perlaza NA. Sex determination from the frontal bone: a geometric morphometric study. J Forensic Sci. 2014;59(5):1330–1332. doi: 10.1111/1556-4029.12467
- Garcovich D, Gasco A, Lorenzo A, et al. Sex estimation through geometric morphometric analysis of the frontal bone: an assessment in pre-pubertal and post-pubertal modern Spanish population. Int J Legal Med. 2022;136(1):319–328. doi: 10.1007/s00414-021-02712-x
- Kholmatova KK, Gorbatova MA, Kharkova OA, Grjibovski AM. Cross-sectional studies: planning, sample size, data analysis. Ekologiya cheloveka (Human Ecology). 2016;23(2):49–56. doi: 10.33396/1728-0869-2016-2-49-56 EDN: VQGTNJ
补充文件
