Changes in overall and primary morbidity in federal districts of the Russian Federation: current status and forecast

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: Morbidity rates serve as key indicators in the comprehensive assessment of public health status. Analyzing their changes plays a crucial role in developing healthcare management strategies at both federal and regional levels. Moreover, such data are used for planning the development of medical infrastructure and identifying the resources needed for its implementation.

AIM: The work aimed to analyze long-term changes in overall and primary morbidity rates across the federal districts of the Russian Federation from 2010 to 2023, assess their trends, and construct predictive models.

METHODS: A retrospective analysis of long-term changes in overall and primary morbidity rates among the population of the federal districts of the Russian Federation was conducted based on data from 2010 to 2023.

RESULTS: An increase in overall morbidity was observed across all federal districts. The highest rates were recorded in the Northwestern Federal District, with a growth rate of 20.39% over the study period, whereas the lowest were in the North Caucasian Federal District, with a growth rate of 12.634%. In the Russian Federation, primary morbidity showed an upward trend, as evidenced by a growth coefficient of 1.046 and a growth rate of 4.601%. The highest rates of primary morbidity from 2010 to 2023 were observed in the Northwestern, Ural, and Volga Federal Districts, with growth rates of 16.869%, 16.279%, and 3.293%, respectively. The lowest primary morbidity rates were observed in the Central and Southern Federal Districts, as indicated by growth coefficients of 0.992 and 0.979 and growth rates of −0.786% and −2.126%, respectively.

CONCLUSION: The analysis of the overall morbidity coefficient revealed that 62.88% of its variability across the Russian Federation was accounted for by temporal changes. The trend demonstrated an unstable upward trajectory, and the parameters of the trend model were statistically significant (MAPE = 0.97; Fcalc = 9.3169 > Fcrit = 3.9823; p = 0.006). For the primary morbidity indicator, it was found that in the Russian federation only 43.54% of its variability was explained by changes in the time parameter. The indicator showed an unstable upward trend, with statistically significant trend model parameters (MAPE = 2.24; Fcalc = 4.2417 > Fcrit = 3.9823; p = 0.004). The medium-term forecast indicates an increase in both overall and primary morbidity across all federal districts. The growth rates of overall morbidity in the majority of federal districts, as well as in the Russian Federation as a whole, exceed the corresponding rates for primary morbidity.

About the authors

Olga V. Medvedeva

Ryazan State Medical University

Author for correspondence.
Email: medvedeva1104@mail.ru
ORCID iD: 0000-0002-3637-9062
SPIN-code: 8808-5837

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Ryazan

Larisa I. Menshikova

Russian Medical Academy of Continuing Professional Education

Email: menshikova1807@gmail.com
ORCID iD: 0000-0002-3034-9014
SPIN-code: 9700-6736

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Irina M. Son

Russian Medical Academy of Continuing Professional Education

Email: sonirinami@gmail.com
ORCID iD: 0000-0001-9309-2853
SPIN-code: 8288-6706

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Natalya V. Chvyreva

Ryazan State Medical University

Email: nchvyreva@bk.ru
ORCID iD: 0000-0003-1138-3900
SPIN-code: 1397-4374

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Ryazan

Ivan N. Bolshov

Ryazan State Medical University

Email: Ivan-bolshov89@yandex.ru
ORCID iD: 0000-0001-7271-4035
SPIN-code: 9874-1020

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Ryazan

Elvira V. Zimina

Russian University of Medicine

Email: zev@koziz.ru
ORCID iD: 0000-0002-3590-753X
SPIN-code: 4683-5052

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

References

  1. Starodubov VI, Stupak VS, Manoshkina EM, et al. The morbidity of adult population in the Russian Federation and its Federal Okrugs and Subjects in 2016–2022. Problems of Social Hygiene Public Health and History of Medicine. 2024;32(6):1220–1226. doi: 10.32687/0869-866X-2024-32-6-1220-1226 EDN: PGLYJO
  2. Grebenshhikova AA. Health as the main indicator of the quality of life of the population. Vestnik sovremennyh issledovanij. 2018;(12.1):62–64. (In Russ.) EDN: YSQLYD
  3. Ivanova SN. Public health and health care development in the regions of Russia. Siberian Journal of Life Sciences and Agriculture. 2021;13(2):47–63. doi: 10.12731/2658-6649-2021-13-2-47-63 EDN: PTOZFH
  4. Vorobiev MV, Kharitonova TI, Kholmogorskaya OV, et al. Analysis of the morbidity of the adult population attached to a medical organization. Current problems of health care and medical statistics. 2023;(4):357–369. doi: 10.24412/2312-2935-2023-4-357-369 EDN: VHJBUW
  5. Skipin DL, Yukhtanova YuA, Kryzhanovskii OA, Tokmakova EG. Life expectancy in Russia’s regions. Economic and Social Changes: Facts, Trends, Forecast. 2022;15(2):156–171. doi: 10.15838/esc.2022.2.80.10 EDN: YJLWOW
  6. Shubin EV, Shubin EE, Strykov AK. Modern approaches to the culture of organizing the preservation of the health of the adult population. Aktual'nye problemy gumanitarnyh i social'no-jekonomicheskih nauk. 2023;(S97-1):117–120. EDN: WOFXXG
  7. Chernyshyov AV, Irzhaev DI, Zolotukhina AYu, et al. Population health status as one of the indicators of modern society development. Avicenna Bulletin. 2022;24(1):103–112. doi: 10.25005/2074-0581-2022-24-1-103-112 EDN: MFFGOQ
  8. Alexandrova GA, Golubev NA, Kobyakova OS, et al. Morbidity rate of the adult population of Russia in 2021 with a diagnosis established for the first time in life: statistical materials. Moscow: Federal Research Institute for Health Care Organization and Information; 2022. (In Russ.) doi: 10.21045/978-5-94116-073-0-2022 EDN: KDJVBC
  9. Kotov EG, Alexandrova GA, Kobyakova OS, et al. General morbidity of the adult population of Russia in 2021: statistical materials. Moscow: Federal Research Institute for Health Care Organization and Information; 2022. (In Russ.) doi: 10.21045/978-5-94116-074-7-2022 EDN: DVUUZB
  10. Averin YP. Change in the quality of life of the Russian population as a factor of the value structure transformation. Moscow State University Bulletin. Series 18. Sociology and Political Science. 2021;27(1):85–111. doi: 10.24290/1029-3736-2021-27-1-85-111 EDN: WJNGPT
  11. Pinkovetskaia YuS. Assessing the development of the regional health care systems in Russia. Management Issues. 2022;(5):34–46. doi: 10.22394/2304-3369-2022-5-34-46 EDN: QSRHWG
  12. Berova FZh. Comparative analysis of morbidity and mortality at various levels. News of the Kabardin-Balkar Scientific Center of RAS. 2019;4(90):31–39. doi: 10.35330/1991-6639-2019-4-90-31-39 EDN: JVGXDI
  13. Proskurina NV. Health conditions of the popul ation in the Russian Federation: statistical aspect. Vestnik Altajskoj akademii jekonomiki i prava. 2020;(6-1):77–83. doi: 10.17513/vaael.1167 EDN: KZTZWW
  14. Budilova EV, Migranova LA. Spread of socially significant diseases and control of them in Russia. Population. 2020;23(2):85–98. doi: 10.19181/population.2020.23.2.8 EDN: NDJGXE
  15. Medik VA. Population morbidity: history, current status and methodology of study. Moscow: KnoRus; 2023. (In Russ.) ISBN: 978-5-406-11162-8 EDN: XGHUFW
  16. Vaslavskaya IYu, Zinuriva GKh, Kashipova GM. Issue and evaluation of identified problems in the implementation of state programs to support health care. Economics and management of a national economy. 2020;10(1-1):601–609. doi: 10.34670/AR.2020.91.1.066 EDN: BXHXHH
  17. Zagdyn ZM, Zudin AB, Denyushenkov V.L. Strategies in tackling long-term and socially determined biological challenges worsening public health. Public Health and Life Environment - Ph&Le. 2024;32(9):7–18. doi: 10.35627/2219-5238/2024-32-9-7-18 EDN: IRSNEK
  18. Makhmutov AA, Zhelevskaya VV. Features of primary and general morbidity attached adult population (for example city Hospital named after M.I. Shevchuk of KomsomolsK-on-Amur). Vestnik obshhestvennogo zdorov'ja i zdravoohranenija Dal'nego Vostoka Rossii. 2024;(1):25–31. EDN: GUFAEA
  19. Polikarpov AV, Sankova MV, Golubev NA, et al. Characteristics of territorial planning models in healthcare. Russian Journal of Preventive Medicine. 2023;26(7):45. doi: 10.17116/profmed20232607145 EDN: OJPFDB
  20. Budilova EV, Lagutin MB, Migranova LA. Impact of the demographic and socio-economic factors on the population health. Population. 2019;22(3):80–92. doi: 10.24411/1561-7785-2019-00028 EDN: NXOLUX
  21. Regions of Russia. Socio-economic indicators: statistical collection. Moscow: Rosstat; 2022. (In Russ.) [cited 2024 Dec 9]. Available from: https://rosstat.gov.ru/storage/mediabank/Region_Pokaz_2022.pdf
  22. Aksenova EI, Grechushkina NA, Kameneva TN, et al. Public Health: Evolution of the Concept in Strategic Documents on Health Protection and Healthcare Development in Countries of the World. Мoscow: Research Institute for Healthcare Organization and Medical Management of Moscow Healthcare Department; 2021. (In Russ.) ISBN: 978-5-907404-59-5 EDN: DEPPRF
  23. Saginbaev UR, Akhmedov TA, Rukavishnikova SA, Davydova EP. Analysis of the rate and changes in the incidence of age-related diseases (by medical care uptake) in 2018–2022 (through the example of a municipal hospital in Saint Petersburg). Bulletin of Siberian Medicine. 2025;23(4):129–135. doi: 10.20538/1682-0363-2024-4-129-135 EDN: QFEVAG
  24. Perkhov VI, Gridnev OV. COVID-19 pandemic lessons for policy in the field of public health. Current problems of health care and medical statistics. 2020;(2):206–222. doi: 10.24411/2312-2935-2020-00043 EDN: ZMDDLH
  25. Malofeeva EV. Medium-term adaptation of public health systems under the influence of the COVID-19 pandemic: challenges and proposals. Population and Economics. 2020;4(2):77–80. doi: 10.3897/popecon.4.e53612 EDN: PDLCLY
  26. World Health Organization. Responding to noncommunicable diseases during the COVID-19 Pandemic and Beyond. Geneva: World Health Organization; 2020 [cited 2024 Dec 23]. Avaliable from: https://iris.who.int/bitstream/handle/10665/334145/%20WHO-2019-nCoV-Non-communicable_diseases-Policy_brief-%202020.1-rus.pdf?sequence=17&isAllowed=y
  27. Chigrina VP, Khodakova OV, Tyufilin DS, et al. Analysis of the trend in the morbidity of the population of the Russian Federation considering the factors affecting the availability of general medical services. Health care of the russian federation. 2023;67(4):275–283. doi: 10.47470/0044-197X-2023-67-4-275-283 EDN: JQGEXM

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Average growth and lead coefficients for overall and primary morbidity indicators across the federal districts of the Russian Federation. RF, Russian Federation; CFD, Central Federal District; NWFD, Northwestern Federal District; SFD, Southern Federal District; NCFD, North Caucasian Federal District; VFD, Volga Federal District; UFD, Ural Federal District; SIBFD, Siberian Federal District; FEFD, Far Eastern Federal District; Kp, growth coefficient; Kl, lead coefficient

Download (153KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».