Circannual variations in partial oxygen density depending on solar activity level and climatic zone

Cover Page

Cite item

Abstract

BACKGROUND: Some medical weather classifications identify reduced partial oxygen density in the air as a key parameter affecting human well-being. This parameter can be modulated not only by meteorological factors but also by the helio-geophysical environment. It should be noted that synoptic combinations with elevated oxygen content are not considered among the weather types, although several studies have shown that hyperoxia can have adverse effects on health.

AIM: To assess the influence of circannual variations in solar activity on the changes of atmospheric partial oxygen density in subarctic and subtropical regions.

METHODS: Calculations of partial oxygen density were based on daily average values of air temperature, atmospheric pressure, and relative humidity of the ambient air. Sunspot number data were obtained from publicly available sources provided by the Royal Observatory of Belgium. Data from 2007 (a year of low solar activity in the 23rd solar cycle) and 2001 (a year of high solar activity) were compared. Wavelet analysis was used for mathematical processing.

RESULTS: The mesor, amplitude, coefficient of variation, and rhythm spectrum of sunspot numbers differed significantly between the years of low (2007) and high (2001) solar activity. In 2001, the dominant rhythm was close to a semiannual cycle. In 2007, the rhythm of sunspot numbers was 27.27 days. In Khanty-Mansiysk, the seasonal range of partial oxygen density was ~147 g/m3 in 2001 and ~70 g/m3 in 2007. The annual cycle was characterized by prevailing hyperoxia, with upper values reaching 395 g/m3 (normal: 285 g/m3). In Polokwane, the winter–summer variation in partial oxygen density in 2001 was approximately 24 g/m3 (virtually the same as in 2007, 30 g/m3), which falls into the category of unfavorable hypoxic weather. In the year of high solar activity (2001), a polyrhythmic pattern of both stable and transient rhythms of partial oxygen density was observed in both subarctic and subtropical regions.

CONCLUSION: In the subarctic region, wintertime values of partial oxygen density were high in the year of low solar activity and very high in the year of high activity. Seasonal fluctuations between hyperoxia and hypoxia extended far beyond the range of favorable weather types. Fluctuations in partial oxygen density characteristic of the subtropical climate consistently remained within hypoxic ranges, regardless of solar activity levels. During the year of elevated solar activity, both examined regions exhibited polyrhythmic patterns of partial oxygen density, indicative of desynchronosis. It is recommended that medical weather classifications be expanded to include “hyperoxic day” and “hyperoxic weather type.”

About the authors

Oleg N. Ragozin

Khanty-Mansiysk State Medical Academy

Email: oragozin@mail.ru
ORCID iD: 0000-0002-5318-9623
SPIN-code: 7132-3844

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Khanty-Mansiysk

Livhuwani Muthelo

Limpopo University

Email: livhuwani.muthelo@ul.ac.za
ResearcherId: AHC-1001-2022

PhD

South Africa, Polokwane

Elena Yu. Shalamova

Khanty-Mansiysk State Medical Academy

Email: selenzik@mail.ru
ORCID iD: 0000-0001-5201-4496
SPIN-code: 8125-9359

Dr. Sci. (Biology), Associate Professor

Russian Federation, Khanty-Mansiysk

Andrei B. Gudkov

Northern State Medical University

Email: gudkovab@nsmu.ru
ORCID iD: 0000-0001-5923-0941
SPIN-code: 4369-3372

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Arkhangelsk

Ivan V. Radysh

Peoples’ Friendship University of Russia

Email: iradysh@mail.ru
ORCID iD: 0000-0003-0939-6411

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Elina R. Ragozinа

Khanty-Mansiysk State Medical Academy

Email: elinka1000@yandex.ru
ORCID iD: 0000-0003-0199-2948
SPIN-code: 2372-6621
Russian Federation, Khanty-Mansiysk

Irina Pogonysheva

Nizhnevartovsk State University

Author for correspondence.
Email: severina.i@bk.ru
ORCID iD: 0000-0002-5759-0270
SPIN-code: 6095-8392

Cand. Sci. (Biology), Associate Professor

Russian Federation, Nizhnevartovsk

References

  1. Otradnova MI, Rogacheva SM, Zhutov AS, Kozlitin AM. Influence of solar activity on the human’s cardiac rhythm under stress. Ekologiya cheloveka (Human Ecology). 2019;26(7):4–10. doi: 10.33396/1728-0869-2019-7-4-10 EDN: XZTGYO
  2. Dzyuban VV. Historical background in the development of natural and climatic factors in the organization of treatment and recreation in Russia. Bulletin Social-Economic and Humanitarian Research. 2021;(10):40–49. doi: 10.5281/zenodo.4560114 EDN: QJNFGU
  3. Noskov SN, Borisova DS, Yeremin GB, et al. The impact of space weather on human health. Analytical review. Vestnik of Saint Petersburg University. Medicine. 2024;19(1):54–74. doi: 10.21638/spbu11.2024.105 EDN: VEFPKL
  4. Bobrovnitskiy IP, Yakovlev MYu, Fesyun OA, Evseev SM. Main aspects of the influence of meteorological and heliogeophysical factors on the human body. Russian Journal of Rehabilitation Medicine. 2021;(2):40–46. EDN: OKPRST
  5. Mikhaylis AA, Mikulyak NI, Vershinina OD. Influence of solar flare activity and geomagnetic storms on the manifestation cyclicity of cerebral and coronary vascular catastrophes. University proceedings. Volga region. Medical sciences. 2019;(2):152–163. doi: 10.21685/2072-3032-2019-2-14 EDN: AEWKDS
  6. Tyultyaeva LA, Denisova TP, Lipatova TE, Shulpina NYu. Heliogeomagnetic parameters and pathology of digestive organs in patients of different ages. Saratov Journal of Medical Scientific Research. 2020;16(1):181–185. EDN: WYKLTL
  7. Karpin VA, Gudkov AB, Usinin AF, Stolyarov VV. Analysis of the heliogeomagnetic anomaly influence on the inhabitants of the Northern urbanized area. Ekologiya cheloveka (Human Ecology). 2018;25(11):10–15. doi: 10.33396/1728-0869-2018-11-10-15 EDN: YNWBTV
  8. Ginzburg AS, Vinogradova AA, Fedorova EI, et al. Oxygen in the atmosphere of large cities and people breath problems. Geophysical Processes and Biosphere. 2014;13(2):5–19. EDN: SCKXXN
  9. Grigoriev II, Paramonov IG, Ten MM. A quick guide to making medical weather forecasts. Moscow: Gidrometeoizdat; 1974. 12 p. (In Russ.) URL: https://rusneb.ru/catalog/ 000199_000009_007418025
  10. Petrov VN. Features of the influence of the partial gradient of oxygen density in the atmospheric air on the health of the population living in the Arctic zone of the Russian Federation. Herald of the Kola Science Center of the RAS. 2015;(3):82–92. EDN: VBAYNZ
  11. Aghajanyan NA, Chizhov AYa. Hypoxic, hypocapnic, hypercapnic conditions. Moscow: Medicine; 2003. 93 p. (In Russ.) EDN: QLEQMZ
  12. Zhuravlev AI. Quantum biophysics of animals and humans. Moscow: BINOM; 2011. 398 p. (In Russ.) EDN: QKTOKZ
  13. Berezovsky VA, Yanko RV, Chaka EG, Litovka IG. The influence of intermittent hypoxia and hyperoxia on the respiratory part of the lungs. Pulmonologiya. 2013;(2):57–60. doi: 10.18093/0869-0189-2013-0-2-57-60 EDN: QIKWYJ
  14. Dolgikh VT, Govorova NV, Orlov YuP, et al. Pathophysiological aspects of hyperoxia in anesthesiologist-reanimatologist’’s practice. General Reanimatology. 2017;13(3):83–93. doi: 10.15360/1813-9779-2017-3-83-93 EDN: YYVPHX
  15. Orlov YuP, Govorova NV, Lukach VN, et al. Hyperoxia in the ICU and what has changed after 100 years in the tactics of using oxygen in medicine: areview. Annals of Critical Care. 2022;(2):80–94. (In Russ). doi: 10.21320/1818-474X-2022-2-80-94 EDN: CRDEJI
  16. Ovcharova VF, Butyeva IV, Shveinova TG, Aleshina TP. Specialized weather forecast for medical purposes and prevention of meteopathic reactions. Problems of Balneology, Physiotherapy and Exercise Therapy. 1974;(2):109–119. (In Russ.)
  17. Nikberg II, Revutsky EL, Sakali LI. Human heliometeotropic reactions. Kiev: Zdorov’e; 1986. 144 p. (In Russ.) URL: https://rusneb.ru/catalog/010003_000061_db70c1d25937e2a5877fbc87235da9d0
  18. Ragozin ON, Tatarinzev PB, Pogonysheva IA, et al. Corrections for geographical differences in photoperiod in time-series analysis. Ekologiya cheloveka (Human Ecology). 2023;30(2):139–149. doi: 10.17816/humeco117532 EDN: VVYOJA
  19. Vladimirsky BM, Temuryants NA, Martynyuk VS. Space weather and our life. Moscow: DMK Press; 2022. 220 р. (In Russ.) ISBN: 5-85099-146-8
  20. Belisheva NK, Martynova AA, Pryanichnikov SV, et al. Linkage of parameters of the interplanetary magnetic fieldand the solar wind in the polar cusp with the psychophysiological state of the residents of Spitzbergen archipelago. Herald of the Kola Science Center of the RAS. 2018;10(4):5–24. doi: 10.25702/KSC.2307-5228.2018.10.4.5-24 EDN: YYSRUD
  21. Vishnevskii VV, Rogacheva SM. Biotropic impact of space weather (based on the materials of the Russian-Ukrainian monitoring “Geliomed” 2003-2010). St. Petersburg: VVM; 2010. 312 р. (In Russ.) ISBN: 978-5-9651-0548-9
  22. Vladimirsky BM, Narmansky VYa, Temuryants NA. Cosmic rhythms in the magnetosphere, atmosphere, habitat, bio-, noospheres, in the earth’s crust. Simferopol; 1994. 176 р. (In Russ.) EDN: XVSYPD
  23. Martynyuk VS, Temuryants NA. The experimental verification of electromagnetic hypothesis of solarbiosphere connections. Scientific Notes of V.I. Vernadsky Crimean Federal University. Biology. Chemistry. 2007;20(1):8–27.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Descriptive statistics of sunspot numbers (arb. units), 2001 and 2007: A, amplitude; cv , coefficient of variation.

Download (198KB)
3. Fig. 2. Wavelet spectrograms of solar activity variations: A, 2001; B, 2007

Download (371KB)
4. Fig. 3. Circannual changes of partial oxygen density in Khanty-Mansiysk and Polokwane during years of high (2001) and low (2007) solar activity.

Download (571KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».