动物性食品摄入与肠道微生物群之间的关系
- 作者: Ermolaev A.V.1,2, Lyamin A.V.1, Gorbachev D.O.1
-
隶属关系:
- Samara State Medical University
- 1026 of the Center of State Sanitary and Epidemiological Surveillance
- 期: 卷 32, 编号 3 (2025)
- 页面: 195-206
- 栏目: ORIGINAL STUDY ARTICLES
- URL: https://journal-vniispk.ru/1728-0869/article/view/314582
- DOI: https://doi.org/10.17816/humeco642725
- EDN: https://elibrary.ru/YIPDKR
- ID: 314582
如何引用文章
全文:
详细
论证。在当代社会,膳食在维持人体健康与福祉方面发挥着关键作用。然而,不良的饮食习惯和不均衡的膳食结构可能导致多种与营养相关的疾病。在饮食标准化且选择受限的封闭式集体环境中,营养相关疾病的发生风险显著增加。膳食多样性不足、食品质量较差以及缺乏摄入控制,均可能促进急性传染病和慢性病的发生。
目的。评估动物性食品摄入特点与肠道微生物群组成之间的关系。
材料与方法。本研究共纳入120名男性受试者,他们被编入一个组织结构严密、出入受限的集体(封闭式集体)。基于24小时膳食回顾法对受试者的实际膳食摄入情况进行了评估。肠道微生物群采用培养法检测,配合扩展型培养基组合,并通过MALDI-ToF质谱技术对分离的菌株进行鉴定。统计分析使用 StatTech v.4.2. 6标准软件包完成。
结果。摄入乳及乳制品者显著更常检出 Salmonella spp.;摄入蛋类制品者更常检出 Agromyces spp., Geobacillus spp. 和 Roseomonas spp.; 摄入肉类制品者更常检出 Lactococcus spp.; 摄入鱼类制品者更常检出 Limosilactobacillus spp., Salmonella spp. 和 Micrococcus spp.; 摄入动物性油脂者则更常检出 Klebsiella spp. 和 Lactococcus spp.
结论。本研究揭示了摄入特定动物性食品与肠道微生物群组成之间的若干特征性关系。统计分析显示,摄入肉类和鱼类熟食与分离出 Lactococcus spp., Limosilactobacillus spp., Salmonella spp. 和 Micrococcus spp. 呈显著相关性。摄入乳类和蛋类食品与分离出 Salmonella spp., Agromyces spp., Geobacillus spp. 和 Roseomonas spp. 密切相关。
作者简介
Alexander V. Ermolaev
Samara State Medical University; 1026 of the Center of State Sanitary and Epidemiological Surveillance
编辑信件的主要联系方式.
Email: a.v.ermolaev@samsmu.ru
ORCID iD: 0000-0003-4044-9139
SPIN 代码: 1541-8495
俄罗斯联邦, Samara; Samara
Artem V. Lyamin
Samara State Medical University
Email: a.v.lyamin@samsmu.ru
ORCID iD: 0000-0002-5905-1895
SPIN 代码: 6607-8990
MD, Dr. Sci. (Medicine), Associate Professor
俄罗斯联邦, SamaraDmitrii O. Gorbachev
Samara State Medical University
Email: d.o.gorbachev@samsmu.ru
ORCID iD: 0000-0002-8044-9806
SPIN 代码: 1276-2740
MD, Dr. Sci. (Medicine), Associate Professor
俄罗斯联邦, Samara参考
- Tutelyan VA, Vyalkov AI, Razumov AN. The science of healthy eating. Moscow: Panorama; 2010. 839 р. (In Russ.) EDN: TFKGHH
- Tutelyan VA, Nikityuk DB. Key challenges in the dietary intake structure and cutting edge technologies for optimizing nutrition to protect the health of the Russian рopulation. Problems of Nutrition. 2024;93(1):6–21. doi: 10.33029/0042-8833-2024-93-1-6-21 EDN: XCDQZJ
- Kiprushkina EI, Kolodyaznaya VS, Filippov VI, et al. The importance of nutrition in the forming of intestinal microbiome. Journal of International Academy of Refrigeration. 2020;(2):52–59. doi: 10.17586/1606-4313-2020-19-2-52-59 EDN: JFZYEJ
- Stoma IO. Microbiome in medicine: a guide for doctors. Moscow: GEOTAR-Media; 2020. 319 р. (In Russ.) ISBN: 978-5-9704-5844-0
- Nikonova EL, Popova EN, editors. Microbiota. Moscow: Media Sfera; 2019. 256 р. (In Russ.) ISBN: 978-5-89084-058-5
- Bragina TV, Sheveleva SA, Elizarova EV, et al. The structure of blood gut microbiota markers in athletes and their relationship with the diet. Problems of Nutrition. 2022;91(4):35–46. doi: 10.33029/0042-8833-2022-91-4-35-46 EDN: HXIFIJ
- Markova YuM, Sidorova YuS. Amaranth, quinoa and buckwheat grain products: role in human nutrition and maintenance of the intestinal microbiome. Problems of Nutrition. 2022;91(6):17–29. doi: 10.33029/0042-8833-2022-91-6-17-29 EDN: YQIQFY
- Kontareva VYu, Kryuchkova VV. Influence of the enriched kefir products on enterobakteria development. Food Processing: Techniques and Technology. 2017;(4):54–59. doi: 10.21603/2074-9414-2017-4-54-59 EDN: VZJRZB
- Hoffmann V, Simiyu S, Sewell DK, et al. Milk product safety and household food hygiene influence bacterial contamination of infant food in Peri-Urban Kenya. Front Public Health. 2022;9:772892. doi: 10.3389/fpubh.2021.772892
- Zhan Y, Yong-Jiang X, Yuanfa L. Influences of dietary oils and fats, and the accompanied minor content of components on the gut microbiota and gut inflammation: A review. Trends in Food Science & Technology. 2021;113:255–276. doi: 10.1016/j.tifs.2021.05.001
- Viteri-Echeverría J, Calvo-Lerma J, Ferriz-Jordán M, et al. Association between dietary intake and faecal microbiota in children with cystic fibrosis. Nutrients. 2023;15(24):5013. doi: 10.3390/nu15245013
- Syromyatnikov MY, Kokina AV, Solodskikh SA, et al. High-Throughput 16S rRNA gene sequencing of butter microbiota reveals a variety of opportunistic pathogens. Foods (Basel, Switzerland). 2020;9(5):608. doi: 10.3390/foods9050608
- Liu X, Shao Y, Sun J, et al. Egg consumption improves vascular and gut microbiota function without increasing inflammatory, metabolic, and oxidative stress markers. Food Sci Nutr. 2021;10 (1):295–304. doi: 10.1002/fsn3.2671
- Barakat RK, Griffiths MW, Harris LJ. Isolation and characterization of Carnobacterium, Lactococcus, and Enterococcus spp. from cooked, modified atmosphere packaged, refrigerated, poultry meat. Int J Food Microbiol. 2000;62(1-2):83–94. doi: 10.1016/S0168-1605(00)00381-0
- Settier-Ramírez L, López-Carballo G, Gavara R, et al. Evaluation of Lactococcus lactis subsp. lactis as protective culture for active packaging of non-fermented foods: creamy mushroom soup and sliced cooked ham. Food Control. 2021;122(3):107802. doi: 10.1016/j.foodcont.2020.107802
- Okyere A, Bishoff D, Oyaro MO, et al. Analysis of fish commonly sold in local supermarkets reveals the presence of pathogenic and multidrug-resistant bacterial communities. Microbiology Insights. 2018;11:1178636118786925. doi: 10.1177/1178636118786925
- Shang Q, Li Q, Zhang M, et al. Dietary Keratan Sulfate from shark cartilage modulates gut microbiota and increases the abundance of Lactobacillus spp. Mar Drugs. 2016;14(12):224. doi: 10.3390/md14120224
- Belleggia L, Osimani A. Fermented fish and fermented fish-based products, an ever-growing source of microbial diversity: a literature review. Food Res Int. 2023;172:113112. doi: 10.1016/j.foodres.2023.113112
- Tacconi E, Palma G, De Biase D, et al. Microbiota effect on trimethylamine n-oxide production: from cancer to fitness — a practical preventing recommendation and therapies. Nutrients. 2023;15(3):563. doi: 10.3390/nu15030563
补充文件



