Evaluation of Influence of Metal Nanoparticles аnd Their Oxides on Elemental Composition of Organs in Laboratory Animals аnd Their Bioaccumulative Potential
- Authors: Obidina I.V.1, Churilov G.I.1, Ivanycheva Y.N.1, Pronina E.M.1, Matua T.I.1, Chernykh I.V.1
-
Affiliations:
- Ryazan State Medical University
- Issue: Vol 32, No 5 (2025)
- Pages: 334-343
- Section: ORIGINAL STUDY ARTICLES
- URL: https://journal-vniispk.ru/1728-0869/article/view/314593
- DOI: https://doi.org/10.17816/humeco642454
- EDN: https://elibrary.ru/AUCQNQ
- ID: 314593
Cite item
Abstract
BACKGROUND: Active development of nanotechnology and the use of research in many industries, including agriculture and medicine, require a comprehensive study of the influence of ultra dispersed substances on humans and animals. Today, we have limited evidence of the influence of nanoparticles on the microelement levels in organs and tissues. However, given the growing production and release of nanoparticles into the environment in processes, it is required to consider both the direct and indirect effects of particles of various chemical origin.
AIM: To evaluate the influence of copper, cobalt, and copper oxide nanoparticles on behavior and microelement levels in the liver, kidneys, and reproductive system in laboratory animals and to study their bioaccumulative potential upon intragastric administration.
METHODS: The experiment was conducted on male ICR mice divided into four variable groups of 6 subjects each, who were administered distilled water (control group) or 0.02 mg/kg suspensions of copper, cobalt, and copper oxide nanoparticles intragastrically for 20 days, once a day. We assessed the changes in body weight and anxiety in animals (the number of upright postures with and without support and the number of short-term grooming). At the end of the experiment, the animals were euthanized to sample the liver, kidneys, and reproductive organs and to determine the microelement levels using energy dispersive X-ray fluorescence.
RESULTS: After administration of all tested nanoparticles, the animals showed signs of anxiety, including an increased number of upright postures with support (the cobalt nanoparticle group) and a decreased number of upright postures without support accompanied by increased number of grooming acts (the copper and copper oxide nanoparticle groups). Animals of the same groups (copper and copper oxide) showed a decrease in body weight compared to the control group. An analysis of the microelement level in the liver, kidneys, and reproductive system revealed ambiguous changes in potassium, calcium, and sulfur levels and increased oxygen content in the testes and appendages. We detected no signs of bioaccumulation of copper, copper oxide, and cobalt nanoparticles in the studied organs. Thus, nanoparticles have indirect toxicity, which is manifested by changes in the microelement levels in organs and is characterized by the rapid elimination of nanoparticles.
CONCLUSION: Copper, cobalt, and copper oxide nanoparticles have a multidirectional indirect effect on the physiology and behavior of animals realized by changes in the microelement levels in their organs. We detected no accumulation of copper, cobalt, or copper oxide nanoparticles in the studied organs.
Full Text
##article.viewOnOriginalSite##About the authors
Inna V. Obidina
Ryazan State Medical University
Author for correspondence.
Email: inna.obidina@mail.ru
ORCID iD: 0000-0002-7235-6415
SPIN-code: 8087-7620
Cand. Sci. (Biology); Associate Professor
Russian Federation, RyazanGennady I. Churilov
Ryazan State Medical University
Email: genchurilov@yandex.ru
ORCID iD: 0000-0002-4056-9248
SPIN-code: 2096-4817
Dr. Sci. (Biology), Professor
Russian Federation, RyazanYulia N. Ivanycheva
Ryazan State Medical University
Email: julnic79@mail.ru
ORCID iD: 0009-0007-6930-7296
SPIN-code: 1636-3360
Cand. Sci. (Biology), Associate Professor
Russian Federation, RyazanElizaveta M. Pronina
Ryazan State Medical University
Email: pronina.em2002@yandex.ru
Russian Federation, Ryazan
Tamriko I. Matua
Ryazan State Medical University
Email: matua.2001@mail.ru
Russian Federation, Ryazan
Ivan V. Chernykh
Ryazan State Medical University
Email: ivchernykh88@mail.ru
ORCID iD: 0000-0002-5618-7607
SPIN-code: 5238-6165
Dr. Sci. (Biology), Associate Professor
Russian Federation, RyazanReferences
- Gmoshinski IV, Shipelin VA, Khotimchenko SA. Nanomaterials in food products and their package: comparative analysis of risks and advantages. Health Risk Analysis. 2018;(4):134–142. doi: 10.21668/health.risk/2018.4.16 EDN: YUGSCD
- Vershinina IA, Lebedev SV. Investigation of the responses of the Eisenia fetida worms when copper and zinc nanoparticles are introduced into the habitat. Bulletin of Nizhnevartovsk State University. 2022;(1):45–54. doi: 10.36906/2311-4444/22-1/05 EDN: FYMTIA
- Sutunkova MP, Solovyеva SN, Chernyshov IN, et al. Manifestations of subacute systemic toxicity of lead oxide nanoparticles in rats after an inhalation exposure. Toxicological Review. 2020;(6):3–13. doi: 10.36946/0869-7922-2020-6-3-13 EDN: GPVVHA
- Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–839. doi: 10.1289/ehp.7339
- Chernykh IV, Kopanitsa MA, Shchulkin AV, et al. Evaluation of cytotoxicity of gold glyconanoparticles of human colon adenocarcinoma cells. I.P. Pavlov Russian Medical Biological Herald. 2023;31(2):255–264. doi: 10.17816/PAVL0VJ112525 EDN: BBWWHG
- Sutunkova MP, Minigalieva IA, Privalova LI, et al. Impact of toxicity effects of zinc oxide nanoparticles in rats within acute and subacute experiments. Hygiene and Sanitation. 2021;100(7):704–710. doi: 10.47470/0016-9900-2021-100-7-704-710 EDN: GTJKCC
- Antsiferova AA, Kopaeva MYu, Kochkin VN, Kashkarov PK. Effects of long-term oral administration of silver nanoparticles on the cognitive functions of mammals. Toxicological Review. 2021;29(6):33–38. doi: 10.36946/0869-7922-2021-29-6-33-38 EDN: WASEGZ
- Lutkovskaya YaV, Sizova EA, Kamirova AM. Ultrafine forms of trace elements in the diet of ruminants: impact on productivity and health. The Agrarian Scientific Journal. 2024;(5):96–104. doi: 10.28983/asj.y2024i5pp96-104 EDN: KQORQF
- Onishchenko GG, Tutelyan VA, Gmoshinskiy IV, Khotimchenko SA. Evelopment of the system for nanomaterials and nanotechnology safety in Russian Federation. Hygiene and Sanitation. 2013;92(1):4–11. EDN: PVFGVB
- Awashra M, Młynarz P. The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective. Nanoscale Adv. 2023;5(10):2674–2723. doi: 10.1039/d2na00534d
- Polishchuk SD, Churilov DG, Churilov GI, et al. Determining the common patterns of nanoparticle effects on physiological and biochemical processes in plants. E3S Web of Conferences. 2023;411:02051. doi: 10.1051/e3sconf/202341102051
- Stepanova IA, Polischuk SD, Churilov DG, et al. Biological activity of cobalt and zinc oxide nanoparticles and their bioaccumulation on the example of vetch. Herald of Ryazan State Agrotechnological University Named after P.A. Kostychev. 2019;(1):62–67. EDN: EQVUFC
- Churilov GI, Obidina IV, Churilov DG, Polishchuk SD. Influence of the size and concentration of metal nanoparticles on their biological activity. Modern Science: Actual Problems of Theory and Practice. 2020;(3):62–69. EDN: KOWNLD
- Churilov GI, Obidina IV, Churilov DG, et al. Comparative toxicological characteristics of cobalt, copper, copper oxide and zinc nanoparticles. Modern Science: Actual Problems of Theory and Practice. 2020;(4):28–34. doi: 10.37882/2223-2966.2020.04.38EDN: ASCFPX
- Stepanova IA. Mineral and lipid metabolism indicators in livestock after administration of metal nanopowders [dissertation]. Ryazan; 2018. 158 p. (In Russ.) EDN: GYKDWE
- Lee IC, Ko JW, Park SH, et al. Comparative toxicity and biodistribution in rats following subchronic oral exposure to copper nanoparticles and microparticles. Part Fibre Toxicol. 2016;13(1):56. doi: 10.1186/s12989-016-0169-x
- Zinkovskaya I, Ivlieva AL, Petritskaya EN, Rogatkin DA. Unexpected reproductive effect of prolonged oral administration of silver nanoparticles in laboratory mice. Ekologiya cheloveka (Human Ecology). 2020;27(10):23–30. doi: 10.33396/1728-0869-2020-10-23-30 EDN: DMCCCS
- Elyasin PA, Zalavina SV, Mashak AN, Skalny AV. Peculiarities of mineral exchange of liver and structure of the mesenterial lymph node of adolescent rats in conditions of lead chronic intoxication. The Siberian Scientific Medical Journal. 2018;38(6):24–28. doi: 10.15372/SSMJ20180604 EDN: YPPDUL
- Apukhtin KV, Shevlyakov AD, Kotova MM, et al. Analyses of rodent grooming and its behavioral microstructure in modern neurobiological studies. Russian Journal of Physiology. 2024;110(6):889–914. doi: 10.31857/S0869813924060022 EDN: BFDDUM
- Pronina IV, Mochalova ES, Efimova YuA, Postnikov PV. Biological functions of cobalt and its toxicology and detection in anti-doping control. Fine Chemical Technologies. 2021;16(4):318–336. doi: 10.32362/2410-6593-2021-16-4-318-336 EDN: SLGLNG
- Sutunkova MP. Toxicological-hygienic criteria and risk management for health impacts of metal-containing nanoparticles [dissertation]. Yekaterinburg; 2019. 317 p. (In Russ.) EDN: RHVLXY
- Zemlyanova MA, Stepankov MS, Ignatova AM. Features of bioaccumulation and toxic effects of copper (II) oxide nanoparticles under the oral route of intake into the body. Toxicological Review. 2021;29(6):47–53. doi: 10.36946/0869-7922-2021-29-6-47-53 EDN: PHYHZY
- Zaytsev VV. Pharmacotoxicological properties and efficacy of cobalt and copper nanoparticle-based compounds in hypomicroelementoses [dissertation]. Astrakhan; 2022. 155 p. (In Russ.) EDN: BFIMNX
- Zelepukin IV. Novel approaches to controlling nanoparticle pharmacokinetics [dissertation]. Moscow; 2021. 109 p. EDN: HIEHCE
- Triboulet S, Aude-Garcia C, Carrière M, et al. Molecular responses of mouse macrophages to copper and copper oxide nanoparticles: proteomic analyses. Mol Cell Proteomics. 2013;12(11):3108–3122. doi: 10.1074/mcp.M112.025205
- Franovskii SYu, Turbinskii VV, Oks EI, Bortnikova SB. Elemental markers of exposure under combined oral introduction of chemical mixtures with prevalent antimony and arsenic into white Wistar rats . Health Risk Analysis. 2019;(3):94–103. doi: 10.21668/health.risk/2019.3.11 EDN: WGXHOB
- Glukhcheva Y, Tinkov AA, Ajsuvakova OP, et al. The impact of perinatal cobalt exposure on iron, copper, manganese, and zinc metabolism in immature ICR mice. Problems of Biological, Medical and Pharmaceutical Chemistry. 2019;22(3):3–8. doi: 10.29296/25877313-2019-03-01 EDN: YWEEZL
- Sizova EA, Miroshnikov SA, Lebedev SV, Glushchenko NN. Effect of multiple doses of nanoparticles copper on the elemental composition of rat liver. Vestnik of the Orenburg State University. 2012;(6):188–190. EDN: PDQWHL
- Akhpolova VO, Brin VB. Calcium exchange and its hormonal regulation. Journal of Fundamental Medicine and Biology. 2017;(2):38–46. EDN: ZHRGCH
- Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. 2013;2013:942916. doi: 10.1155/2013/942916
- Sakovets TG, Bogdanov EI. Hypokalemic myoplegia. Kazan Medical Journal. 2013;94(6):933–938. doi: 10.17816/KMJ1822 EDN: RSHIY
- Cremades A, Sanchez-Capelo A, Monserrat A, et al. Potassium deficiency effects on potassium, polyamines and amino acids in mouse tissues. Comp Biochem Physiol A Mol Integr Physiol. 2003;134(3):647–654. doi: 10.1016/s1095-6433(02)00369-0
- Huang CC, Aronstam RS, Chen DR, Huang YW. Oxidative stress and gene expression in lung cells exposed to ZnO nanoparticles. Toxicol In Vitro. 2010;24(1):45–55. doi: 10.1016/j.tiv.2009.09.007
- Iskakova SA. Lipid peroxidation in organs of rats after subchronic sulfur vapor exposure. In: The dynamics of scientific research. Ecology. Publishing house Education and Science s.r.o.; 2008.
- Nimni ME, Han B, Cordoba F. Are we getting enough sulfur in our diet? Nutr Metab. 2007;4:24. doi: 10.1186/1743-7075-4-24
- Min Y, Suminda GGD, Heo Y, et al. Metal-based nanoparticles and their oxidative stress mechanisms. Antioxidants. 2023;12(3):703. doi: 10.3390/antiox12030703
- Hersh AM, Alomari S, Tyler BM. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int J Mol Sci. 2022;23(8):4153. doi: 10.3390/ijms23084153
- Zaitseva NV, Zemlyanova MA, Stepankov MS, Ignatova AM. Copper (II) oxide nanoparticles toxicity and potential human health hazards. Ekologiya cheloveka (Human Ecology). 2021;28(11):50–57. doi: 10.33396/1728-0869-2021-11-50-57 EDN: BBNUWI
- Zhang H, Wu X, Mehmood K, et al. Intestinal epithelial cell injury induced by copper nanoparticles in piglets. Environ Toxicol Pharmacol. 2017;56:151–156. doi: 10.1016/j.etap.2017.09.010
- Poon W, Zhang YN, Ouyang B, et al. Elimination pathways of nanoparticles. ACS Nano. 2019;13(5):5785–5798. doi: 10.1021/acsnano.9b01383
- Ivlieva AL, Zinkovskaia I, Petriskaya EN, Rogatkin DA. Nanoparticles and nanomaterials as inevitable modern toxic agents. Review. Part 2. Main areas of research on toxicity and techniques to measure a content of nanoparticles in tissues. Ekologiya cheloveka (Human Ecology). 2022;29(3):147–162. doi: 10.17816/humeco100156 EDN: CUXNFJ
- Habas K, Demir E, Guo I, et al. Toxicity mechanisms of nanoparticles in the male reproductive system. Drug Metab Rev. 2021;53(4):604–617. doi: 10.1080/03602532.2021.1917597
Supplementary files
