Evaluation of Influence of Metal Nanoparticles аnd Their Oxides on Elemental Composition of Organs in Laboratory Animals аnd Their Bioaccumulative Potential

Abstract

BACKGROUND: Active development of nanotechnology and the use of research in many industries, including agriculture and medicine, require a comprehensive study of the influence of ultra dispersed substances on humans and animals. Today, we have limited evidence of the influence of nanoparticles on the microelement levels in organs and tissues. However, given the growing production and release of nanoparticles into the environment in processes, it is required to consider both the direct and indirect effects of particles of various chemical origin.

AIM: To evaluate the influence of copper, cobalt, and copper oxide nanoparticles on behavior and microelement levels in the liver, kidneys, and reproductive system in laboratory animals and to study their bioaccumulative potential upon intragastric administration.

METHODS: The experiment was conducted on male ICR mice divided into four variable groups of 6 subjects each, who were administered distilled water (control group) or 0.02 mg/kg suspensions of copper, cobalt, and copper oxide nanoparticles intragastrically for 20 days, once a day. We assessed the changes in body weight and anxiety in animals (the number of upright postures with and without support and the number of short-term grooming). At the end of the experiment, the animals were euthanized to sample the liver, kidneys, and reproductive organs and to determine the microelement levels using energy dispersive X-ray fluorescence.

RESULTS: After administration of all tested nanoparticles, the animals showed signs of anxiety, including an increased number of upright postures with support (the cobalt nanoparticle group) and a decreased number of upright postures without support accompanied by increased number of grooming acts (the copper and copper oxide nanoparticle groups). Animals of the same groups (copper and copper oxide) showed a decrease in body weight compared to the control group. An analysis of the microelement level in the liver, kidneys, and reproductive system revealed ambiguous changes in potassium, calcium, and sulfur levels and increased oxygen content in the testes and appendages. We detected no signs of bioaccumulation of copper, copper oxide, and cobalt nanoparticles in the studied organs. Thus, nanoparticles have indirect toxicity, which is manifested by changes in the microelement levels in organs and is characterized by the rapid elimination of nanoparticles.

CONCLUSION: Copper, cobalt, and copper oxide nanoparticles have a multidirectional indirect effect on the physiology and behavior of animals realized by changes in the microelement levels in their organs. We detected no accumulation of copper, cobalt, or copper oxide nanoparticles in the studied organs.

About the authors

Inna V. Obidina

Ryazan State Medical University

Author for correspondence.
Email: inna.obidina@mail.ru
ORCID iD: 0000-0002-7235-6415
SPIN-code: 8087-7620

Cand. Sci. (Biology); Associate Professor

Russian Federation, Ryazan

Gennady I. Churilov

Ryazan State Medical University

Email: genchurilov@yandex.ru
ORCID iD: 0000-0002-4056-9248
SPIN-code: 2096-4817

Dr. Sci. (Biology), Professor

Russian Federation, Ryazan

Yulia N. Ivanycheva

Ryazan State Medical University

Email: julnic79@mail.ru
ORCID iD: 0009-0007-6930-7296
SPIN-code: 1636-3360

Cand. Sci. (Biology), Associate Professor

Russian Federation, Ryazan

Elizaveta M. Pronina

Ryazan State Medical University

Email: pronina.em2002@yandex.ru
Russian Federation, Ryazan

Tamriko I. Matua

Ryazan State Medical University

Email: matua.2001@mail.ru
Russian Federation, Ryazan

Ivan V. Chernykh

Ryazan State Medical University

Email: ivchernykh88@mail.ru
ORCID iD: 0000-0002-5618-7607
SPIN-code: 5238-6165

Dr. Sci. (Biology), Associate Professor

Russian Federation, Ryazan

References

  1. Gmoshinski IV, Shipelin VA, Khotimchenko SA. Nanomaterials in food products and their package: comparative analysis of risks and advantages. Health Risk Analysis. 2018;(4):134–142. doi: 10.21668/health.risk/2018.4.16 EDN: YUGSCD
  2. Vershinina IA, Lebedev SV. Investigation of the responses of the Eisenia fetida worms when copper and zinc nanoparticles are introduced into the habitat. Bulletin of Nizhnevartovsk State University. 2022;(1):45–54. doi: 10.36906/2311-4444/22-1/05 EDN: FYMTIA
  3. Sutunkova MP, Solovyеva SN, Chernyshov IN, et al. Manifestations of subacute systemic toxicity of lead oxide nanoparticles in rats after an inhalation exposure. Toxicological Review. 2020;(6):3–13. doi: 10.36946/0869-7922-2020-6-3-13 EDN: GPVVHA
  4. Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–839. doi: 10.1289/ehp.7339
  5. Chernykh IV, Kopanitsa MA, Shchulkin AV, et al. Evaluation of cytotoxicity of gold glyconanoparticles of human colon adenocarcinoma cells. I.P. Pavlov Russian Medical Biological Herald. 2023;31(2):255–264. doi: 10.17816/PAVL0VJ112525 EDN: BBWWHG
  6. Sutunkova MP, Minigalieva IA, Privalova LI, et al. Impact of toxicity effects of zinc oxide nanoparticles in rats within acute and subacute experiments. Hygiene and Sanitation. 2021;100(7):704–710. doi: 10.47470/0016-9900-2021-100-7-704-710 EDN: GTJKCC
  7. Antsiferova AA, Kopaeva MYu, Kochkin VN, Kashkarov PK. Effects of long-term oral administration of silver nanoparticles on the cognitive functions of mammals. Toxicological Review. 2021;29(6):33–38. doi: 10.36946/0869-7922-2021-29-6-33-38 EDN: WASEGZ
  8. Lutkovskaya YaV, Sizova EA, Kamirova AM. Ultrafine forms of trace elements in the diet of ruminants: impact on productivity and health. The Agrarian Scientific Journal. 2024;(5):96–104. doi: 10.28983/asj.y2024i5pp96-104 EDN: KQORQF
  9. Onishchenko GG, Tutelyan VA, Gmoshinskiy IV, Khotimchenko SA. Evelopment of the system for nanomaterials and nanotechnology safety in Russian Federation. Hygiene and Sanitation. 2013;92(1):4–11. EDN: PVFGVB
  10. Awashra M, Młynarz P. The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective. Nanoscale Adv. 2023;5(10):2674–2723. doi: 10.1039/d2na00534d
  11. Polishchuk SD, Churilov DG, Churilov GI, et al. Determining the common patterns of nanoparticle effects on physiological and biochemical processes in plants. E3S Web of Conferences. 2023;411:02051. doi: 10.1051/e3sconf/202341102051
  12. Stepanova IA, Polischuk SD, Churilov DG, et al. Biological activity of cobalt and zinc oxide nanoparticles and their bioaccumulation on the example of vetch. Herald of Ryazan State Agrotechnological University Named after P.A. Kostychev. 2019;(1):62–67. EDN: EQVUFC
  13. Churilov GI, Obidina IV, Churilov DG, Polishchuk SD. Influence of the size and concentration of metal nanoparticles on their biological activity. Modern Science: Actual Problems of Theory and Practice. 2020;(3):62–69. EDN: KOWNLD
  14. Churilov GI, Obidina IV, Churilov DG, et al. Comparative toxicological characteristics of cobalt, copper, copper oxide and zinc nanoparticles. Modern Science: Actual Problems of Theory and Practice. 2020;(4):28–34. doi: 10.37882/2223-2966.2020.04.38EDN: ASCFPX
  15. Stepanova IA. Mineral and lipid metabolism indicators in livestock after administration of metal nanopowders [dissertation]. Ryazan; 2018. 158 p. (In Russ.) EDN: GYKDWE
  16. Lee IC, Ko JW, Park SH, et al. Comparative toxicity and biodistribution in rats following subchronic oral exposure to copper nanoparticles and microparticles. Part Fibre Toxicol. 2016;13(1):56. doi: 10.1186/s12989-016-0169-x
  17. Zinkovskaya I, Ivlieva AL, Petritskaya EN, Rogatkin DA. Unexpected reproductive effect of prolonged oral administration of silver nanoparticles in laboratory mice. Ekologiya cheloveka (Human Ecology). 2020;27(10):23–30. doi: 10.33396/1728-0869-2020-10-23-30 EDN: DMCCCS
  18. Elyasin PA, Zalavina SV, Mashak AN, Skalny AV. Peculiarities of mineral exchange of liver and structure of the mesenterial lymph node of adolescent rats in conditions of lead chronic intoxication. The Siberian Scientific Medical Journal. 2018;38(6):24–28. doi: 10.15372/SSMJ20180604 EDN: YPPDUL
  19. Apukhtin KV, Shevlyakov AD, Kotova MM, et al. Analyses of rodent grooming and its behavioral microstructure in modern neurobiological studies. Russian Journal of Physiology. 2024;110(6):889–914. doi: 10.31857/S0869813924060022 EDN: BFDDUM
  20. Pronina IV, Mochalova ES, Efimova YuA, Postnikov PV. Biological functions of cobalt and its toxicology and detection in anti-doping control. Fine Chemical Technologies. 2021;16(4):318–336. doi: 10.32362/2410-6593-2021-16-4-318-336 EDN: SLGLNG
  21. Sutunkova MP. Toxicological-hygienic criteria and risk management for health impacts of metal-containing nanoparticles [dissertation]. Yekaterinburg; 2019. 317 p. (In Russ.) EDN: RHVLXY
  22. Zemlyanova MA, Stepankov MS, Ignatova AM. Features of bioaccumulation and toxic effects of copper (II) oxide nanoparticles under the oral route of intake into the body. Toxicological Review. 2021;29(6):47–53. doi: 10.36946/0869-7922-2021-29-6-47-53 EDN: PHYHZY
  23. Zaytsev VV. Pharmacotoxicological properties and efficacy of cobalt and copper nanoparticle-based compounds in hypomicroelementoses [dissertation]. Astrakhan; 2022. 155 p. (In Russ.) EDN: BFIMNX
  24. Zelepukin IV. Novel approaches to controlling nanoparticle pharmacokinetics [dissertation]. Moscow; 2021. 109 p. EDN: HIEHCE
  25. Triboulet S, Aude-Garcia C, Carrière M, et al. Molecular responses of mouse macrophages to copper and copper oxide nanoparticles: proteomic analyses. Mol Cell Proteomics. 2013;12(11):3108–3122. doi: 10.1074/mcp.M112.025205
  26. Franovskii SYu, Turbinskii VV, Oks EI, Bortnikova SB. Elemental markers of exposure under combined oral introduction of chemical mixtures with prevalent antimony and arsenic into white Wistar rats . Health Risk Analysis. 2019;(3):94–103. doi: 10.21668/health.risk/2019.3.11 EDN: WGXHOB
  27. Glukhcheva Y, Tinkov AA, Ajsuvakova OP, et al. The impact of perinatal cobalt exposure on iron, copper, manganese, and zinc metabolism in immature ICR mice. Problems of Biological, Medical and Pharmaceutical Chemistry. 2019;22(3):3–8. doi: 10.29296/25877313-2019-03-01 EDN: YWEEZL
  28. Sizova EA, Miroshnikov SA, Lebedev SV, Glushchenko NN. Effect of multiple doses of nanoparticles copper on the elemental composition of rat liver. Vestnik of the Orenburg State University. 2012;(6):188–190. EDN: PDQWHL
  29. Akhpolova VO, Brin VB. Calcium exchange and its hormonal regulation. Journal of Fundamental Medicine and Biology. 2017;(2):38–46. EDN: ZHRGCH
  30. Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. 2013;2013:942916. doi: 10.1155/2013/942916
  31. Sakovets TG, Bogdanov EI. Hypokalemic myoplegia. Kazan Medical Journal. 2013;94(6):933–938. doi: 10.17816/KMJ1822 EDN: RSHIY
  32. Cremades A, Sanchez-Capelo A, Monserrat A, et al. Potassium deficiency effects on potassium, polyamines and amino acids in mouse tissues. Comp Biochem Physiol A Mol Integr Physiol. 2003;134(3):647–654. doi: 10.1016/s1095-6433(02)00369-0
  33. Huang CC, Aronstam RS, Chen DR, Huang YW. Oxidative stress and gene expression in lung cells exposed to ZnO nanoparticles. Toxicol In Vitro. 2010;24(1):45–55. doi: 10.1016/j.tiv.2009.09.007
  34. Iskakova SA. Lipid peroxidation in organs of rats after subchronic sulfur vapor exposure. In: The dynamics of scientific research. Ecology. Publishing house Education and Science s.r.o.; 2008.
  35. Nimni ME, Han B, Cordoba F. Are we getting enough sulfur in our diet? Nutr Metab. 2007;4:24. doi: 10.1186/1743-7075-4-24
  36. Min Y, Suminda GGD, Heo Y, et al. Metal-based nanoparticles and their oxidative stress mechanisms. Antioxidants. 2023;12(3):703. doi: 10.3390/antiox12030703
  37. Hersh AM, Alomari S, Tyler BM. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int J Mol Sci. 2022;23(8):4153. doi: 10.3390/ijms23084153
  38. Zaitseva NV, Zemlyanova MA, Stepankov MS, Ignatova AM. Copper (II) oxide nanoparticles toxicity and potential human health hazards. Ekologiya cheloveka (Human Ecology). 2021;28(11):50–57. doi: 10.33396/1728-0869-2021-11-50-57 EDN: BBNUWI
  39. Zhang H, Wu X, Mehmood K, et al. Intestinal epithelial cell injury induced by copper nanoparticles in piglets. Environ Toxicol Pharmacol. 2017;56:151–156. doi: 10.1016/j.etap.2017.09.010
  40. Poon W, Zhang YN, Ouyang B, et al. Elimination pathways of nanoparticles. ACS Nano. 2019;13(5):5785–5798. doi: 10.1021/acsnano.9b01383
  41. Ivlieva AL, Zinkovskaia I, Petriskaya EN, Rogatkin DA. Nanoparticles and nanomaterials as inevitable modern toxic agents. Review. Part 2. Main areas of research on toxicity and techniques to measure a content of nanoparticles in tissues. Ekologiya cheloveka (Human Ecology). 2022;29(3):147–162. doi: 10.17816/humeco100156 EDN: CUXNFJ
  42. Habas K, Demir E, Guo I, et al. Toxicity mechanisms of nanoparticles in the male reproductive system. Drug Metab Rev. 2021;53(4):604–617. doi: 10.1080/03602532.2021.1917597

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Changes in body weight of mice (g) with intragastric administration of nanoparticles (NPs) for 21 days (mean value ± standard error of the mean). * Significant differences in relation to the control group (each experimental group was compared with the control group on a specific day of observation using the Dunnett’s test); p <0.01.

Download (79KB)
3. Fig. 1. Changes in body weight of mice (g) with intragastric administration of nanoparticles (NPs) for 21 days (mean value ± standard error of the mean). * Significant differences in relation to the control group (each experimental group was compared with the control group on a specific day of observation using the Dunnett’s test); p <0.01.

Download (110KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».