Relationship Between Iodine аnd Selenium Deficiency in Soil аnd Incidence of Thyroid Diseases in Population of Central Federal District
- Authors: Starodubov V.I.1, Baranchukov V.S.2, Varavikova E.A.1, Berezkin V.Y.2, Kolmykova L.I.2, Danilova V.N.2, Stupak V.S.1, Yenina E.N.1, Zhuravleva Y.S.1
-
Affiliations:
- Russian Research Institute of Health
- Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences
- Issue: Vol 32, No 5 (2025)
- Pages: 353-370
- Section: ORIGINAL STUDY ARTICLES
- URL: https://journal-vniispk.ru/1728-0869/article/view/314595
- DOI: https://doi.org/10.17816/humeco642094
- EDN: https://elibrary.ru/AYFQSN
- ID: 314595
Cite item
Full Text
Abstract
BACKGROUND: In recent decades, there has been an increased incidence of thyroid diseases worldwide. Following the Chernobyl accident, unique environmental and geochemical conditions developed in the Central Federal District, where the thyroid gland was affected by both environmental (microelemental deficiency, primarily iodine and selenium) and man-made (radioisotope contamination) factors. The studies have confirmed the relationship between iodine deficiency in the soil cover of the Central Federal District and the prevalence of thyroid diseases, including cancer. The study provides reliable data to prevent the diseases and to raise diagnostic alerts for the regional healthcare system and allows to develop the appropriate content for the population.
AIM: To analyze regional differences of thyroid disease incidence in the population of the Central Federal District based on its microelemental status.
METHODS: To analyze the population health of the Central Federal District and its constituent entities, we used population data, anonymized data on the number of patients with newly diagnosed thyroid diseases for 2013–2017, and incidence of malignant thyroid neoplasms for 1995–2023. To build a distribution model of microelements in the soil cover of the regions, the Unified State Register of Soil Resources was used. Each soil type–parent rock pair was assigned average content attributes. The reliability of microelemental estimates has been confirmed by field studies. We mapped iodine and selenium status of soils in the studied region. A nonparametric comparison of morbidity rates and map-based estimates was performed using the Spearman’s rank correlation.
RESULTS: An analysis of soil samples collected in 2007–2023 in some regions of the Central Federal District confirmed the correctness of the map-based model of the estimated microelemental composition of soil. We found significant negative correlations (R=-0.473; p=0.055) between the iodine levels in the soils of the Central Federal District and thyroid diseases. For the adult population, we found a positive correlation between radioisotope soil contamination and the incidence of thyroid cancer (R=0.711; p=0.001). In addition, for children (0–17 years), we found a negative correlation (R=-0.375; p=0.138) between the iodine level in soils and the incidence of thyroid cancer. As the selenium level in the soils of the Central Federal District is within the reference range, no relationship was found between the incidence and this microelement level in the soil (R=-0.091; p=0.729).
CONCLUSION: Comparison of geochemical and medical data in the context of spatial heterogeneity of risks associated with the effects of Chernobyl radioactive contamination of soil and natural deficiency confirmed the relationship between iodine deficiency in the environment and health status. There is a need to increase awareness of the population of the Central Federal District and heads of regional executive authorities of the adverse effects of micronutrient deficiency.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Vladimir I. Starodubov
Russian Research Institute of Health
Email: starodubov@mednet.ru
ORCID iD: 0000-0002-3625-4278
SPIN-code: 7223-9834
MD, Dr. Sci. (Medicine), Professor, Academician of the Russian Academy of Sciences
Russian Federation, MoscowVladimir S. Baranchukov
Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences
Author for correspondence.
Email: baranchukov@geokhi.ru
ORCID iD: 0000-0003-1519-9983
SPIN-code: 2266-2251
Russian Federation, Moscow
Elena A. Varavikova
Russian Research Institute of Health
Email: dr.e.varavikova@mail.ru
ORCID iD: 0000-0003-3408-3417
SPIN-code: 3026-3615
MD, Cand. Sci. (Medicine)
Russian Federation, MoscowViktor Yu. Berezkin
Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences
Email: victor76@list.ru
ORCID iD: 0000-0002-1025-638X
SPIN-code: 7074-9478
Cand. Sci. (Geology and Mineralogy)
Russian Federation, MoscowLiudmila I. Kolmykova
Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences
Email: kmila9999@gmail.com
ORCID iD: 0000-0003-4070-9869
SPIN-code: 2111-3310
Cand. Sci. (Geology and Mineralogy)
Russian Federation, MoscowValentina N. Danilova
Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences
Email: val1910@mail.com
ORCID iD: 0000-0003-3308-8443
SPIN-code: 1778-9633
Russian Federation, Moscow
Valery S. Stupak
Russian Research Institute of Health
Email: stupak@mednet.ru
ORCID iD: 0000-0002-8722-1142
SPIN-code: 3720-1479
MD, Dr. Sci. (Medicine), Associate Professor
Russian Federation, MoscowEkaterina N. Yenina
Russian Research Institute of Health
Email: eninaen@bk.ru
ORCID iD: 0000-0002-9876-5102
SPIN-code: 7531-4051
Russian Federation, Moscow
Yulia S. Zhuravleva
Russian Research Institute of Health
Email: zhuravlevays@mednet.ru
ORCID iD: 0000-0002-2278-9415
SPIN-code: 8322-3369
Russian Federation, Moscow
References
- Mason R, Wilkinson JS. The thyroid gland — a review. Aust Vet J. 1973;49(1):44–49. doi: 10.1111/j.1751-0813.1973.tb14680.x
- The untapped potential of the thyroid axis. Lancet Diabetes Endocrinol. 2013;1(3):163. doi: 10.1016/S2213-8587(13)70166-9
- Vinogradov VP. Iodine in nature. Priroda. 1927;(9):670–678. (In Russ.)
- Kovalsky VV. Chemical environment, health, diseases. In: Lebedev AD, editor. Theory and methodology of geographical research of human ecology. Moscow; 1974. Р. 95–111. (In Russ). URL: https://rusneb.ru/catalog/000200_000018_rc_3369968
- Gerasimov GA, Figge D. The Chernobyl: twenty years after. Clinical and experimental thyroidology. 2006;2(2):5–14. doi: 10.14341/ket2006225-14 EDN: PCMBLN
- Fairweather-Tait SJ, Bao Y, Broadley MR, et al. Selenium in human health and disease. Antioxid Redox Signal. 2011;14(7):1337–1383. doi: 10.1089/ars.2010.3275
- Arthur JR, Beckett GJ. Newer aspects of micronutrients in at risk groups: New metabolic roles for selenium. Proceedings of the Nutrition Society. 1994;53(3):615–624. doi: 10.1079/PNS19940070
- Gropper SA, Anderson K, Landing WM, Acosta PB. Dietary selenium intakes and plasma selenium concentrations of formula-fed and cow’s milk-fed infants. J Am Diet Assoc. 1990;90(11):1547–1550.
- Ermakov VV. Biogeochemistry of selenium and its role in prevention of human endemic diseases. Vestnik Otdelenia nauk o Zemle RAN. 2004;(1):1–17. (In Russ.)
- Cholodova EA, Kolomiez ND, Mochort EG. Selenium deficiency and thyroid function in adolescents. Clinical and experimental thyroidology. 2006;2(2):43–47. doi: 10.14341/ket20062243-47 EDN: PCMBNV
- Shabalina EA, Morgunova TB, Orlova SV, Fadeyev VV. Selenium and thyroid gland. Clinical and experimental thyroidology. 2011;7(2):7–18. doi: 10.14341/ket2011727-18 EDN: QZPSIH
- Gromova OA, Troshin IYu, Kosheleva NG. Molecular iodine synergists: new approaches to effective prevention and therapy of iodine-deficiency diseases in pregnant women. Russian Journal of Woman and Child Health. 2011;19(1):51–58. (In Russ.) EDN: PGOGLJ
- Khohlova EA. Selenium and thyroid: the point of view. Novaya apteka (New pharmacy). 2013;(6):82–83. (In Russ.)
- Behne D, Kyriakopoulos A, Meinhold H, Köhrle J. Identification of type I iodothyronine 5'-deiodinase as a selenoenzyme. Biochem Biophys Res Commun. 1990;173(3):1143–1149. doi: 10.1016/s0006-291x(05)80905-2
- Deng Y, Li H, Wang M, et al. Global burden of thyroid cancer from 1990 to 2017. JAMA Network Open. 2020:3(6):e208759. doi: 10.1001/jamanetworkopen.2020.8759
- Vaccarella S, Franceschi S, Bray F, et al. Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis. N Engl J Med. 2016;375(7):614–617. doi: 10.1056/NEJMp1604412
- Kashin VK. Biogeochemistry, phytophysiology and agrochemistry of iodine. Leningrad: Nauka; 1987. 260 р. (In Russ.) EDN: VURCBX
- Golubkina NA, Kekina EG, Nadezhkin SM. Prospects of agricultural plants biofortification with iodine and selenium (review). Trace Elements in Medicine. 2015;16(3):12–19. doi: 10.19112/2413-6174-2015-16-3-12-19 EDN: UZNFCJ
- Aristarkhov AN, Busygin AS, Yakovleva TA. Ecological and agrochemical assessment of selenium content in soils and plants of the North-Eastern Non-Chernozem region. Agrohimia. 2018;(11):67–77. doi: 10.1134/S0002188118090041 EDN: MESURP
- Ermakov VV. Selenium migration in biogeochemical food chains of Russian landscapes. The Problems of biogeochemistry and geochemical ecology. 2008;(2):3–10. (In Russ.)
- Berezkin VYu, Korobova EM, Danilova VN. Iodine and selenium in soils of the Bryansk Region (case study of the Titovka river basin). Lomonosov Geography Journal. 2023;(1):3–15. doi: 10.55959/MSU0579-9414.5.78.1.1 EDN: IIVSCI
- Aleksandrova GA, Polikarpov AV, Ogryzko EV, et al. Morbidity of the total population of Russia in 2014. Statistical materials. Part I. Moscow; 2015. 138 р. (In Russ.) URL: https://minzdrav.gov.ru/documents/9479
- Aleksandrova GA, Polikarpov AV, Golubev NA, et al. Morbidity of the total population of Russia in 2015. Statistical materials. Part I. Moscow; 2016. 139 р. (In Russ.) URL: https://minzdrav.gov.ru/ministry/61/22/stranitsa-979/statisticheskie-i-informatsionnye-materialy/statisticheskiy-sbornik-2015-god
- Aleksandrova GA, Polikarpov AV, Golubev NA, et al. Morbidity of the total population of Russia in 2016. Statistical materials. Part I. Moscow; 2017. 140 р. (In Russ.) URL: https://minzdrav.gov.ru/ministry/61/22/stranitsa-979/statisticheskie-i-informatsionnye-materialy/statisticheskiy-sbornik-2016-god
- Kaprin AD, Starinsky VV, Gretsova OP, et al. Population-based registry of cancer patients in the Russian Federation. Public Health Panorama. 2019;5(1):99–102.
- Korobova EM, Baranchukov VS, Bech JA. Cartographic evaluation of the risk of natural elements’ deficiency in the soil cover provoking spatial variation of the endemic morbidity level (on example of thyroid morbidity among population of the Central Federal District, Russia). Environmental Geochemistry and Health. 2024;46(3):109. doi: 10.1007/s10653-024-01912-9 EDN: OKSAJG
- Alyabina IO, Androkhanov VA, Vershinin VV, et al. Unified state register of soil resources of Russia. Version 1.0. Tula: Grif i K; 2014. 768 p. (In Russ.) EDN: TNAMEB
- Korobova EM. Copper, cobalt and iodine in the natural landscapes of the Non-Chernozem Russian Plain [dissertation abstract]. Moscow; 1992. 23 p. (In Russ.) EDN: ZJJHMR
- Protasova NA, Sherbakov AP. Trace elements (Cr, V, Ni, Mn, Zn, Cu, Co, Ti, Zr, Ga, Be, Sr, Ba, B, I, Mo) in chernozems and gray forest soils of the Central Chernozem region. Voronezh: Voronezhskii gosudarstvennii universitet; 2003. 367 р. (In Russ.) EDN: QKVWMX
- Baranchukov V, Berezkin V, Kolmykova L. Dataset of iodine concentration in soils and grassland vegetation and radioactive contamination of pastures of the regions of the Russian Federation affected by the Chernobyl NPP accident. Data in Brief. 2024;55:110747. doi: 10.1016/j.dib.2024.110747 EDN: PUZLYV
- Proskuryakova GF, Nikitina ON. Accelerated version of the kinetic rhodanide-nitrite method for determination of trace quantities of iodine in biological objects. Agrohimia. 1976;(7):140–143. (In Russ.)
- Arinushkina EV. Manual on chemical analysis of soils. Moscow: MSU; 1970. 487 p. (In Russ.) URL: https://rusneb.ru/catalog/000200_000018_rc_3393272/
- Korobova EM, Baranchukov VS, Kurnosova IV, Silenok AV. Spatial geochemical differentiation of the iodine-induced health risk and distribution of thyroid cancer among urban and rural population of the Central Russian plain affected by the Chernobyl NPP accident. Environmental Geochemistry and Health. 2022;44(6):1875–1891. doi: 10.1007/s10653-021-01133-4 EDN: PCKTLY
- Yahryushin VN. Data on radioactive contamination of the territory of populated areas of the Russian Federation by cesium-137, strontium-90 and plutonium-239+240. Obninsk: Taifun; 2024. 225 р. (In Russ.) URL: https://www.rpatyphoon.ru/upload/medialibrary/ezhegodniki/rzrf/ezheg_rzrf_2024.pdf
- Zvonova I, Krajewski P, Berkovsky V, et al. Validation of 131I ecological transfer models and thyroid dose assessments using Chernobyl fallout data from the Plavsk district, Russia. Journal of Environmental Radioactivity. 2010;101(1):8–15. doi: 10.1016/j.jenvrad.2009.08.005 EDN: MXIQAP
- Konarbayeva GA, Smolyentsev BA. Spatial-genetic features of iodine distribution in soils of Western Siberia. Agrohimia. 2018;(7):85–96. doi: 10.1134/S0002188118070074 EDN: UWYHDX
- Ploibat AR, Voloshin EI. Monitoring of iodine in the soil — plant system (review). Bulletin of KSAU. 2020;(10):101–108. doi: 10.36718/1819-4036-2020-10-101-108 EDN: PCASUF
- Kovalsky VV, Andrianova GA. Microelements in the soil of the USSR. Moscow: Nauka; 1970. 179 р. (In Russ.) URL: https://search.rsl.ru/ru/record/01007401791
- Boyev VA. Selenium in the soils and agricultural plants in the south of the Tyumen region . Tyumen State University Herald. Natural Resource Use and Ecology. 2013(12):112–120. EDN: SEPHCD
- Protasova NA, Gorbunova NS, Belyaev AB. biogeochemistry of microelements in common chernozem Voronezh region. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2015;(4):100–106. EDN: VWNFDZ
- Berezkin VYu, Baranchukov VS, Kolmykova LI, et al. Iodine in soils, pasture vegetation cuttings, and local food products of certain regions of Russia affected by the Chernobyl nuclear power plant accident. RUDN Journal of Ecology and Life Safety. 2023;31(4):419–434. doi: 10.22363/2313-2310-2023-31-4-419-434 EDN: QOBCFE
- de Benoist B., editor. Iodine status worldwide: WHO Global Database on Iodine Deficiency. Geneva: World Health Organization; 2004. 49 р. ISBN: 92 4 159200 1
- The iodine global network. Global scorecard of iodine nutrition in 2023 in the general population based on school-age children (SAC). Ottawa: IGN; 2023. 14 р. URL: https://ign.org/app/uploads/2024/01/Scorecard_2023_References_July-2023_Final.pdf
- Urinary iodine concentrations for determining iodine status deficiency in populations. Vitamin and Mineral Nutrition Information System. Geneva: World Health Organization; 2013. 5 р. URL: https://iris.who.int/bitstream/handle/10665/85972/WHO_NMH_NHD_EPG_13.1_eng.pdf?sequence=1
- Troshina EA, Makolina NP, Senyushkina ES, et al. Iodine deficiency disorders: current state of the problem in the Bryansk region. Problems of Endocrinology. 2021;67(4):84–93. doi: 10.14341/probl12793 EDN: FHDRJG
- Melnichenko GA, Troshina EA, Platonova NM, et al. Iodine deficiency thyroid disease in the Russian Federation: the current state of the problem. Аnalytical review of publications and data of official state statistics (Rosstat). Consilium Medicum. 2019;21(4):14–20. doi: 10.26442/20751753.2019.4.190337 EDN: ZUPEUH
- Ivanov SV, Guk MG, Sorokina LE, Hygienic evaluation of relative status in various regions of the Russian Federation. Natsional'naya Assotsiatsiya Uchenykh. 2018;(11):4–8. EDN: XRHJSH
- Golubkina NA, Sindireva AV, Zaitsev VF. Interigional variability of the human selenium status. South of Russia: Ecology, Development. 2017;12(1):107–127. doi: 10.18470/1992-1098-2017-1-107-127 EDN: YIELCF
- Shantyr II, Yakovleva MV, Vlasenko MA, et al. Determination results of selenium concentration in bioassays of residents of the North-Western region. Preventive And Clinical Medicine. 2022;(2):31–36. doi: 10.47843/2074-9120_2022_2_31 EDN: BLDPCW
- Kolmykova LI, Korobova EM, Baranchukov VS, et al. Chemical composition of groundwater used for drinking in conditions of natural deficiency of iodine and selenium and evaluation of its health effect: the case of Bryansk region (Russia). Environmental Geochemistry and Health. 2021;43(12):4987–5009. doi: 10.1007/s10653-021-01022-w EDN: WBLYGR
- Cardis E, Kesminiene A, Ivanov V., et al. Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst. 2005;97(10):724–732. doi: 10.1093/jnci/dji129
- Bogović Crnčić T. Risk factors for thyroid cancer: what do we know so far? Acta Clinica Croatica. 2020;59(Suppl 1):66–72. doi: 10.20471/acc.2020.59.s1.08
- Laikam KE, editor. Diet of the population. Moscow: Statistika Rossii; 2016. 220 р. (In Russ.) EDN: XDLNHH
- Fei X, Wu J, Liu Q, et al. Spatiotemporal analysis and risk assessment of thyroid cancer in Hangzhou, China. Stochastic Environmental Research and Risk Assessment. 2016;30:2155–2168. doi: 10.1007/s00477-015-1123-4
- Hatch M, Polyanskaya O, McConnell R, et al. Urinary iodine and goiter prevalence in belarus: experience of the Belarus–American cohort study of thyroid cancer and other thyroid diseases following the chornobyl nuclear accident. Thyroid. 2011;21(4):429–437. doi: 10.1089/thy.2010.0143
- Salminen R., editor. Geochemical atlas of Europe. Part 1: Background Information, Methodology and maps. Helsinki: Geological Survey of Finland; 2005. 526 р. ISBN: 9516909213
- López-Abente G, Aragonés N, Pérez-Gómez B, et al. Time trends in municipal distribution patterns of cancer mortality in Spain. BMC Cancer. 2014;14:535 doi: 10.1186/1471-2407-14-535
- Abbag FI, Abu-Eshy SA, Mahfouz AA, et al. Iodine-deficiency disorders in the Aseer region, south-western Saudi Arabia: 20 years after the national survey and universal salt iodization. Public Health Nutr. 2015;18(14):2523–2529. doi: 10.1017/S1368980014003073
Supplementary files
