Intestinal microbiota of indigenous peoples of the North: a systematic review

Cover Page

Cite item

Abstract

BACKGROUND: The microbiota of the indigenous population of the North may play a pivotal role in the development of the polar (northern) type of metabolism supporting increased energy demands and maintaining body homeostasis in extreme cold climates. However, this area remains relatively understudied. Sequencing of bacterial 16S rRNA allows for establishing the full taxonomic composition of microbial communities, thereby facilitating novel insights into the interplay between microbiota, environmental conditions, and the formation of health in different populations.

AIM: The aim of this review is to evaluate the factors and principles of microbiota development in extreme climatic conditions and its potential impact on health in the indigenous peoples of the North.

MATERIALS AND METHODS: A systematic review was conducted based on the 2020 PRISMA guidelines. Original studies were searched for across the PubMed, eLibrary, and Google Scholar databases using Russian keywords “микробиота кишечника” (“intestinal microbiota”), “Север” (“North”), and English “gut microbiome,” “16S rRNA,” and “Arctic.”

RESULTS: Having filtered the results of the primary selection of articles in accordance with the search criteria, five publications were identified that presented the results of intestinal microbiota 16S rRNA studies in Canadian Inuit, Alaska Natives, and Yakuts of the Sakha Republic (Yakutia). The intestinal microbiota of native residents of the North differs is characterized by inter- and intra-population variability in the diversity and taxonomic composition. Despite similar climatic conditions and dietary patterns, microbiota composition of different Northern populations reflects differences in traditional activities, dietary habits, and surrounding animals.

CONCLUSION: Results of available studies are insufficient to form a comprehensive understanding of the northern microbiome and its role in maintaining the health of the indigenous peoples of the North. Nevertheless, the composition of the intestinal microbiota of the northern populations is shown to be diverse and favorable for the metabolic health; further studies are required to identify the mechanisms of the metabolic health formation in cold climate conditions.

About the authors

Tatyana M. Sivtseva

North-Eastern Federal University named after M.K. Ammosov

Author for correspondence.
Email: tm.sivtseva@s-vfu.ru
ORCID iD: 0000-0002-1501-7433
SPIN-code: 9571-3044

Cand. Sci. (Biology)

Russian Federation, Yakutsk

Michiye A. Stepanova

North-Eastern Federal University named after M.K. Ammosov

Email: michiyastepanov@gmail.com

Undergraduate Student

Russian Federation, Yakutsk

Raisa N. Zakharova

North-Eastern Federal University named after M.K. Ammosov

Email: prn.inst@mail.ru
ORCID iD: 0000-0002-1395-8256
SPIN-code: 8399-6329

MD, Cand. Sci. (Medicine)

Russian Federation, Yakutsk

Sergey I. Semenov

North-Eastern Federal University named after M.K. Ammosov

Email: insemenov@yandex.ru
ORCID iD: 0000-0001-8099-2270
SPIN-code: 4442-3374

MD, Dr. Sci. (Medicine)

Russian Federation, Yakutsk

Vladimir L. Osakovsky

North-Eastern Federal University named after M.K. Ammosov

Email: iz_labgene@mail.ru
ORCID iD: 0000-0001-9529-2488
SPIN-code: 2730-0390

Cand. Sci. (Biology)

Russian Federation, Yakutsk

References

  1. Shahi SK, Zarei K, Guseva NV, Mangalam AK. Microbiota analysis using two-step PCR and next-generation 16S rRNA gene sequencing. J Vis Exp. 2019;(152):10.3791/59980. doi: 10.3791/59980
  2. Deschasaux M, Bouter KE, Prodan A, et al. Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography. Nat Med. 2018;24(10):1526–1531. doi: 10.1038/s41591-018-0160-1
  3. Shin JH, Sim M, Lee JY, et al. Lifestyle and geographic insights into the distinct gut microbiota in elderly women from two different geographic locations. J Physiol Anthropol. 2016;35(1):31. doi: 10.1186/s40101-016-0121-7
  4. Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–573. doi: 10.1126/science.1241165
  5. Cummings JH, Macfarlane GT. Role of intestinal bacteria in nutrient metabolism. JPEN J Parenter Enteral Nutr. 1997;21(6):357–365. doi: 10.1177/0148607197021006357
  6. Deleu S, Arnauts K, Deprez L, et al. High acetate concentration protects intestinal barrier and exerts anti-inflammatory effects in organoid-derived epithelial monolayer cultures from patients with ulcerative colitis. Int J Mol Sci. 2023;24(1):768. doi: 10.3390/ijms24010768
  7. Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019;7(1):91. doi: 10.1186/s40168-019-0704-8
  8. Mollick SA, Maji S. Understanding the diversity of human gut microbes in indigenous populations across the world. PREPRINT (Version 1) available at Research Square. doi: 10.21203/rs.3.rs-3950664/v1
  9. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107(33):14691–14696. doi: 10.1073/pnas.1005963107
  10. Schnorr SL, Candela M, Rampelli S, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun 2014;5:3654. doi: 10.1038/ncomms4654
  11. Clemente JC, Pehrsson EC, Blaser MJ, et al. The microbiome of uncontacted Amerindians. Sci Adv. 2015;1(3):e1500183. doi: 10.1126/sciadv.1500183
  12. Sánchez-Quinto A, Cerqueda-García D, Falcón LI, et al. Gut microbiome in children from indigenous and urban communities in méxico: different subsistence models, different microbiomes. Microorganisms. 2020;8(10):1592. doi: 10.3390/microorganisms8101592
  13. Boyko ER. Physiological and biochemical foundations of human life in the North. Yekaterinburg: UrO RAN; 2005. (In Russ.) EDN: TQOGJP
  14. Levy SB, Klimova TM, Zakharova RN, et al. Brown adipose tissue, energy expenditure, and biomarkers of cardio-metabolic health among the Yakut (Sakha) of northeastern Siberia. Am J Hum Biol. 2018;30(6):e23175. doi: 10.1002/ajhb.23175
  15. Haddaway NR, Page MJ, Pritchard CC, McGuinness LA. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis Campbell Systematic Reviews. 2022;18(2):e1230. doi: 10.1002/cl2.1230
  16. Girard C, Tromas N, Amyot M, Shapiro BJ. Gut microbiome of the Canadian Arctic Inuit. mSphere. 2017;2(1):e00297–16. doi: 10.1128/mSphere.00297-16
  17. Dubois G, Girard C, Lapointe FJ, Shapiro BJ. The Inuit gut microbiome is dynamic over time and shaped by traditional foods. Microbiome. 2017;5(1):151. doi: 10.1186/s40168-017-0370-7
  18. Abed JY, Godon T, Mehdaoui F, et al. Gut metagenome profile of the Nunavik Inuit youth is distinct from industrial and non-industrial counterparts. Commun Biol. 2022;5(1):1415. doi: 10.1038/s42003-022-04372-y
  19. Pasolli E, Schiffer L, Manghi P, et al. Accessible, curated metagenomic data through ExperimentHub. Nat. Methods. 2017;14(11):1023–1024. doi: 10.1038/nmeth.4468
  20. Ocvirk S, Wilson AS, Posma JM, et al. A prospective cohort analysis of gut microbial co-metabolism in Alaska Native and rural African people at high and low risk of colorectal cancer. The American Journal of Clinical Nutrition. 2020;111(2):406–419. doi: 10.1093/ajcn/nqz301
  21. Wise JL, Cummings BP. The 7-α-dehydroxylation pathway: An integral component of gut bacterial bile acid metabolism and potential therapeutic target. Front Microbiol. 2023;13:1093420. doi: 10.3389/fmicb.2022.1093420
  22. Kuznetsova V, Tyakht A, Akhmadishina L, et al. Gut microbiome signature of Viliuisk encephalomyelitis in Yakuts includes an increase in microbes linked to lean body mass and eating behaviour. Orphanet J Rare Dis. 2020;15(1):327. doi: 10.1186/s13023-020-01612-4
  23. Yu X, Avall-Jääskeläinen S, Koort J, et al. A Comparative characterization of different host-sourced Lactobacillus ruminis strains and their adhesive, inhibitory, and immunomodulating functions. Front Microbiol. 2017;8:657. doi: 10.3389/fmicb.2017.00657
  24. Yang B., Li M., Wang S., et al. Lactobacillus ruminis relieves DSS-induced colitis due to inflammatory cytokines and modulation of the intestinal microbiota. Food products. 2021; 10(6):1349. doi: 10.3390/foods10061349
  25. Zhernakova DV, Brukhin V, Malov S, et al. Genome-wide sequence analyses of ethnic populations across Russia. Genomics. 2020;112(1):442–458. doi: 10.1016/j.ygeno.2019.03.007.
  26. Angelakis E, Bachar D, Yasir M, et al. Treponema species enrich the gut microbiota of traditional rural populations but are absent from urban individuals. New Microbes New Infect. 2018;27:14–21. doi: 10.1016/j.nmni.2018.10.009
  27. Chevalier C, Stojanović O, Colin DJ, et al. Gut microbiota orchestrates energy homeostasis during cold. Cell. 2015; 163(6):1360–1374. doi: 10.1016/j.cell.2015.11.004
  28. Bo TB, Zhang XY, Wen J, et al. The microbiota-gut-brain interaction in regulating host metabolic adaptation to cold in male Brandt's voles (Lasiopodomys brandtii). ISME J. 2019;13(12):3037–3053. doi: 10.1038/s41396-019-0492-y
  29. Wang Z, Wu Y, Li X, et al. The gut microbiota facilitate their host tolerance to extreme temperatures. BMC Microbiol. 2024;24(1):131. doi: 10.1186/s12866-024-03277-6
  30. Royall D, Wolever TM, Jeejeebhoy KN. Clinical significance of colonic fermentation. Am J Gastroenterol. 1990;85(10):1307–1312.
  31. Moreno-Navarrete JM, Fernandez-Real JM. The gut microbiota modulates both browning of white adipose tissue and the activity of brown adipose tissue. Rev Endocr Metab Disord. 2019;20(4):387–397. doi: 10.1007/s11154-019-09523-x
  32. Ramos-Romero S, Santocildes G, Piñol-Piñol D, et al. Implication of gut microbiota in the physiology of rats intermittently exposed to cold and hypobaric hypoxia. PLoS One. 2020;15(11):e0240686. doi: 10.1371/journal.pone.0240686
  33. Li B, Li L, Li M, et al. Microbiota depletion impairs thermogenesis of brown adipose tissue and browning of white adipose tissue. Cell Rep. 2019;26(10):2720–2737.e5. doi: 10.1016/j.celrep.2019.02.015
  34. Chen PC, Tsai TP, Liao YC, et al. Intestinal dual-specificity phosphatase 6 regulates the cold-induced gut microbiota remodeling to promote white adipose browning. NPJ Biofilms Microbiomes. 2024;10(1):22. doi: 10.1038/s41522-024-00495-8
  35. Byrne CS, Chambers ES, Morrison DJ, Frost G. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obes. 2015;39(9):1331–1338. doi: 10.1038/ijo.2015.84
  36. Ma Y, Zhu L, Ma Z, et al. Distinguishing feature of gut microbiota in Tibetan highland coronary artery disease patients and its link with diet. Sci Rep. 2021;11(1):18486. doi: 10.1038/s41598-021-98075-9
  37. Heinzer K, Lang S, Farowski F, et al. Dietary omega-6/omega-3 ratio is not associated with gut microbiota composition and disease severity in patients with nonalcoholic fatty liver disease. Nutrition Research. 2022;107:12–25. doi: 10.1016/j.nutres.2022.07.006
  38. Lee Y, Lee HY. Revisiting the bacterial phylum composition in metabolic diseases focused on host energy metabolism. Diabetes Metab. J. 2020;44(5):658–667. doi: 10.4093/dmj.2019.0220
  39. Magne F, Gotteland M, Gauthier L, et al. The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients. 2020;12(5):1474. doi: 10.3390/nu12051474
  40. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–108. doi: 10.1126/science.1208344
  41. Hochachka PW, Storey KB. Metabolic consequences of diving in animals and man. Science. 1975;187(4177):613–621. doi: 10.1126/science.163485
  42. Zhou Z, Tran PQ, Kieft K, Anantharaman K. Genome diversification in globally distributed novel marine Proteobacteria is linked to environmental adaptation. The ISME Journal. 2020;14(8):2060–2077. doi: 10.1038/s41396-020-0669-4
  43. Glad T, Kristiansen VF, Nielsen KM, et al. Ecological characterisation of the colonic microbiota in Arctic and Sub-Arctic Seals. Microb Ecol. 2010;60(2):320–330. doi: 10.1007/s00248-010-9690-x
  44. Miroshnikova MS. The main representatives of the rumen microbiome (review). Animal Husbandry and Fodder Production. 2020;103(4):174–185. EDN: AGNCZZ doi: 10.33284/2658-3135-103-4-174
  45. Mizrahi I, Jami E. Review: The compositional variation of the rumen microbiome and its effect on host performance and methane emission. Animal. 2018;12(s2):s220–s232. doi: 10.1017/S1751731118001957

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Flow-chart for selection of articles.

Download (244KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».