Major temporal trends and age-related characteristics of obesity morbidity in Arkhangelsk region population

Cover Page

Cite item

Abstract

BACKGROUND: Obesity is a chronic disease that represents a significant risk factor of type 2 diabetes mellitus and cardiovascular diseases, as well as a primary contributor to disability. This condition affects individuals of all age groups, including children, which represents a particularly concerning trend. The incidence of obesity over multiple years has not been sufficiently studied in Russia. It is therefore pertinent to analyze the incidence of obesity over time in different age groups in order to identify the principal determining factors.

AIM: To evaluate the main dynamic and age-related characteristics of obesity morbidity in the Arkhangelsk Region.

MATERIALS AND METHODS: We conducted a retrospective, analytical, non-randomized study. The 1991–2022 changes in the primary obesity morbidity in the Arkhangelsk Region population was analyzed. The contribution of the incidence in different age groups to the total change in the primary morbidity and degree of chronification in the population was investigated. The extent of underreporting of obesity morbidity during the period of the pandemic was estimated. The study employed a variety of analytical techniques, including the use of standardized indicators, time series analysis, and index methods.

RESULTS: Our findings revealed a consistent increase in the primary morbidity of obesity over the 1991–2006 period, followed by a subsequent decline. The overall primary morbidity demonstrated a 506.4% increase. The changes in the primary obesity morbidity across the population are most closely aligned with those observed in the 0- to 14-year-old age group. The substantial fluctuations in the primary morbidity among the overall population are associated with those observed in the older age groups. Obesity is a chronic disease, and the proportion of individuals who are chronically obese is increasing. It is estimated that the primary morbidity of obesity was underreported by 16.8% during the period of the pandemic.

CONCLUSION: The analysis of the dynamic characteristics of the obesity morbidity allows for assuming its significant dependence on administrative factors, most notably on changes in diagnostic criteria. It is evident that there is an unmet need in the programs designed to report, treat, and prevent obesity, particularly in children, with the aim of reducing the cardiometabolic population burden and other risks. This is particularly pertinent in the context of the need to develop the Arctic zone of the Russian Federation and to protect health in the region.

About the authors

Kirill V. Shelygin

Northern State Medical University

Author for correspondence.
Email: shellugin@yandex.ru
ORCID iD: 0000-0002-4827-2369
SPIN-code: 7787-6746

MD, Dr. Sci. (Medicine), Associate Professor

Russian Federation, Arkhangelsk

Alexandra V. Strelkova

Northern State Medical University; N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Email: al.strelkova@yandex.ru
ORCID iD: 0000-0002-9077-889X
SPIN-code: 1890-4879

MD, Cand. Sci (Medicine)

Russian Federation, Arkhangelsk; Arkhangelsk

Lada I. Lozhkina

Northern State Medical University

Email: lada1@yandex.ru
ORCID iD: 0000-0002-3687-6122
SPIN-code: 5094-9436

Cand. Sci. (Psychology)

Russian Federation, Arkhangelsk

Svetlana I. Malyavskaya

Northern State Medical University

Email: malyavskaya@yandex.ru
ORCID iD: 0000-0003-2521-0824
SPIN-code: 6257-4400

MD, Dr. Sci (Medicine), Professor

Russian Federation, Arkhangelsk

References

  1. Logvinova OV, Poydasheva AG, Bakulin IS, et al. Modern concepts of the pathogenesis of obesity and new approaches to its correction. Obesity and Metabolism. 2018;15(2):11–16. EDN: OWOUKT doi: 10.14341/OMET9491
  2. Obesity: preventing and managing the global epidemic: report of a WHO Consultation on Obesity, Geneva, 3–5 June 1997 [cited 2024 Sep 12]. Available from: https://iris.who.int/handle/10665/63854
  3. Dedov II, Shestakova MV, Galstyan GR. The prevalence of type 2 diabetes mellitus in the adult population of Russia (NATION study). Diabetes Mellitus. 2016;19(2):104–112. EDN: WBAQHX doi: 10.14341/DM2004116-17
  4. Report on the fifth round of data collection, 2018–2020: WHO European Childhood Obesity Surveillance Initiative (COSI) [cited 2024 Sep 12]. Available from: https://www.who.int/europe/publications/i/item/WHO-EURO-2022-6594-46360-67071
  5. Center for Demographic Research of the New Economic School: Database [cited 2024 Sep 12]. Available from: https://www.nes.ru/demogr-fermort-data
  6. Volova TL, Shelygin KV, Menshikova LI, Redko AN. The influence of changes in the organization of medical care on the indicators of mental disorders in children. Ekologiya cheloveka (Human Ecology). 2022;29(2):99–108. EDN: RIQQEA doi: 10.17816/humeco80632
  7. Andreeva EN, Baibarina MB, Biryukova EV. Obesity: Etiology, Pathogenesis, Clinical Aspects: Hands for Doctors. Moscow: Med. Inform. Agentstvo; 2004. (In Russ.)
  8. Vasyukova OV. Obesity in children and adolescents: diagnosis criteria. Obesity and Metabolism. 2019;16(1):70–73. EDN: NHIPXP doi: 10.14341/omet10170
  9. Butrova SA, Dzgoeva FKh. Visceral obesity is a key link in the metabolic syndrome. Obesity and Metabolism. 2004;1(1):10–16. EDN: OPHDEL doi: 10.14341/2071-8713-5173
  10. Uchamprina VA, Romantsova TI, Kalashnikov MF. Metabolic syndrome: аrguments pro’s and con’s. Obesity and Metabolism. 2012;9(2):17–27. EDN: PEHMUV doi: 10.14341/omet2012217-27
  11. Alberti KG, Eckel RH, Scott MG, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation. 2009;120(16):1640–1645. doi: 10.1161/CIRCULATIONAHA.109.192644
  12. Garvey W, Garber A, Mechanick J, et al. American Association of Clinical Endocrinologists (ААСЕ) and American College of Endocrinology (АСЕ) Position Statement on the 2014 Advanced Framework for a New Diagnosis of Obesity as a Chronic Disease. Endocr Pract. 2014;20(9):977–989. doi: 10.4158/EP14280.PS
  13. Strizheletsky VV, Gomon YuМ, Spichakova ЕА, et al. Drug therapy for obesity in the Russian Federation: pharmacoepidemiological study. Farmakoekonomika. Modern Pharmacoeconomics and Pharmacoepidemiology. 2022;15(3):320–331. EDN: LUEFWQ doi: 10.17749/2070-4909/farmakoekonomika.2022.149
  14. Deal BJ, Huffman MD, Binns H, Stone NJ. Perspective: childhood obesity requires new strategies for prevention. Adv Nutr. 2020;11(5):1071–1078. doi: 10.1093/advances/nmaa040
  15. Peterkova VA, Bezlepkina OB, Bolotova NV, et al. Clinical guidelines «Obesity in children». Problems of Endocrinology. 2021;67(5):67–83. EDN: IXIZSV doi: 10.14341/probl12802
  16. Lir DN, Kozlov AI, Vershubsky GG, et al. Overweight and obesity in children 7–17 years old in Northwestern Russia and the Cis-Urals. Moscow University Anthropology Bulletin. 2018;(3):55–60. EDN: VRCFRC doi: 10.32521/2074-8132.2018.3.055-060
  17. Dmitrieva TG, Rybochkina AV. Regional, ethnic and socio-economic aspects of obesity in children. Vestnik of North-Eastern Federal University. Seriya: Medical Sciences. 2022;(2):12–19. EDN: JZDQUM doi: 10.25587/SVFU.2022.27.2.002
  18. Savina AA, Feyginova SI. Obesity prevalence in population of the Russian Federation: before the COVID-19 pandemic. Social Aspects of Population Health. 2022;68(5):4. EDN: EOYEAN doi: 10.21045/2071-5021-2022-68-5-4
  19. Cole TJ. A method for assessing age-standardized weight-for-height in children seen cross-sectionally. Ann Hum Biol. 1979;6(3):249–268. doi: 10.1080/03014467900007252
  20. Must A, Dallal GE, Dietz WH. Reference data for obesity: 85th and 95th percentiles of body mass index (wt/ht2) and triceps skinfold thickness. Am J Clin Nutr. 1991;53(4):839–846. doi: 10.1093/ajcn/53.4.839
  21. de Onis M, Onyango AW, Borghi E, et al. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85(9):660–667. doi: 10.2471/BLT.07.043497
  22. Makarova SG. Is there really a need to create “regional percentile curves” of mass and height indices? (comment on the article by R.R. Kildiyarova “Assessment of children’s physical development using percentile diagrams”). Current Pediatrics. 2017;16(5):438–440. EDN: ZTIYMB doi: 10.15690/vsp.v16i5.1809
  23. WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr Suppl. 2006;450:76–85. doi: 10.1111/j.1651-2227.2006.tb02378.x
  24. Dedov II, Peterkova VA, editors. Diagnosis and treatment of obesity in children and adolescents. In: Federal clinical guidelines (protocols) for the management of children with endocrine diseases. Moscow: Praktika; 2014. P. 163–183. (In Russ.)
  25. Peterkova VA, Nagaeva EV, Shiryaeva TYu. Assessment of physical development of children and adolescents: мethodological recommendations. Moscow: Russian Association of Endocrinologists, 2017. (In Russ.)
  26. Vasyukova OV, Okorokov PL, Bezlepkina OB. Modern strategies for the treatment of childhood obesity. Problems of Endocrinology. 2022;68(6):131–136. EDN: ERVHYW doi: 10.14341/probl13208
  27. Kumar S, Kaufman T. Childhood obesity. Panminerva Med. 2018;60(4):200–212. doi: 10.23736/S0031-0808.18.03557-7
  28. Gurnani M, Birken C, Hamilton J. Childhood obesity: causes, consequences, and management. Pediatr Clin North Am. 2015;62(4):821–840. doi: 10.1016/j.pcl.2015.04.001
  29. Dean E. Childhood obesity. Nurs Stand. 2016;31(1):15. doi: 10.7748/ns.31.1.15.s17
  30. Güngör N.K. Overweight and obesity in children and adolescents. J Clin Res Pediatr Endocrinol. 2014;3(6):129–143. doi: 10.4274/Jcrpe.1471
  31. Gritsinskaya VL, Novikova VP, Khavkin AI. Epidemiology of obesity in children and adolescents (systematic review and meta-analysis of publications over a 15-year period). Clinical Practice in Pediatrics. 2022;17(2):126–135. EDN: BTFVGE doi: 10.20953/1817- 7646-2022-2-126-135.
  32. Mamathujaeva GM. Current status of research on the features of epidemiology and diagnosis of obesity in children and adolescents (literature review). International Journal of Scientific Pediatrics. 2022;(3):23–34. EDN: WPLFMU doi: 10.56121/2181-2926-2022-3-23-34
  33. Dakhkilgova HT. Childhood obesity: the current state of the problem. Pediatric Nutrition. 2019;17(5):47–53. EDN: RTMOXU doi: 10.32521/2074-8132.2018.3.055-060
  34. Global health estimates: life expectancy and leading causes of death and disability. Global Health Observatory. Geneva: World Health Organization, 2021 [cited 2024 Sep 12]. Available from: https://www.who.int/data/global-health-estimates
  35. Kozlov AI, Gasanov EV, Parfenteva OI. Modern interpretations of evolutionary, anthropological and ecological aspects of the “thrifty genotype” hypothesis. Moscow University Anthropology Bulletin. Series 23: Anthropology. 2023;(4):47–57. EDN: DSTBSV doi: 10.32521/2074-8132.2023.4.047-057
  36. Neel JV. Diabetes mellitus: A “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14(4):353–362.
  37. Neel JV. The “Thrifty Genotype” in 1998. Nutr Rev. 1999;57(5 Pt 2):S2–S9.
  38. Ayub Q, Moutsianas L, Chen Y, et al. Revisiting the thrifty gene hypothesis via 65 loci associated with susceptibility to type 2 diabetes. Am J Hum Genet. 2014;94(2):176–185. doi: 10.1016/j.ajhg.2013.12.010
  39. Jobling MA, Hurles ME, Tyler-Smith C. Human evolutionary genetics. New York: Garland Science; 2004. doi: 10.1016/j.jhevol.2004.08.002
  40. Prentice AM. Starvation in humans: evolutionary background and contemporary implications. Mech Ageing Dev. 2005;126(9):976–981. doi: 10.1016/j.mad.2005.03.018
  41. Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206. doi: 10.1038/nature14177
  42. Sellayah D. The impact of early human migration on brown adipose tissue evolution and its relevance to the modern obesity pandemic. J Endocrine Soc. 2019; 3(2):372–386. doi: 10.1210/js.2018-00363.
  43. Sellayah D, Cagampang F, Cox R. On the evolutionary origins of obesity: a new hypothesis. Endocrinology. 2014;155(5):1573–1588. doi: 10.1210/en.2013-2103
  44. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5–20. doi: 10.1093/bmb/60.1.5
  45. Barker D. The midwife, the coincidence, and the hypothesis. Br Med J. 2003;327(7429):1428–1430. doi: 10.1136/bmj.327.7429.1428
  46. Leonova EN. Socio-psychological types of eating behavior. Bulletin of Udmurt University. Series: Philosophy. Psychology. Pedagogy. 2017;27(2):174–181. EDN: ZDDEKJ
  47. Dubov AV. The ecological homeorhesis as a basis of the evolutionary change. Fundamental Research. 2005;(10):77–78. EDN: IUJUCF

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of primary obesity-related morbidity rates per 100,000 people in the Arkhangelsk Region in 1991–2022 (standardized).

Download (210KB)
3. Fig. 2. Contribution of morbidity in separate age groups to the change in the primary obesity-related morbidity in the Arkhangelsk Region, %.

Download (134KB)
4. Fig. 3. Chronicity dynamics of obesity-related morbidity in the population of the Arkhangelsk Region, units.

Download (112KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».